* AD-A168 738 EVALURTIONS OF SOF THARE TECN'IOLOG!ES TESTING CLEWOOH u@
AND METRICS(U) MARYLAND UNIV COL ﬁﬁ DEPT OF
COMPUTER SCIENCE R W SELBY MAY 85 90
UNCLASSIFIED AFOSR-TR-86-0279 F49620-86-C-0001 F/G 9/2




R N P L N T R R LY S WL LR

PR AOIRY CUCL TR CA RN, C (Gt LA g ho o e
..\
[ e : )
g .
1= 28 @o:
= lwg
L 4
= e |
22 it noe
MICRACOR aus




AFOSR-TR- 86-0279

AD-A168 738

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

Approved for publie release}
distribution unlimited.

e —

OTIC FILE TOPY

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

720742
4’\ Approved for publie releasey
D I '< ST distributicnunlimited.

ELECTE




Technica) Report-lSOO May 198s

Evaluations of Software Tech-~

nologiag: Testing, CLEANROOM,
and Metrics

College Park

Y (AFSC)
DPRICL Y STTENTIFIC RESEAWH (
AR FORTEDPRICY

ey
N R R PR e tmweat mmd 1S
NCIITE O 70 \ S
. e . ; RN 1 3,
This -
app ¥ e
Oiat e

- FPR g0 { n
MATlﬁti:;nnzzglInrormation01'131°
Chief,

y
Research Supporred 1q Pare by the AFOSR Contrace AFOSR-F
and Nisy 5 4

Grant NS§G~5123 to the Universitv Of Marvlang.
Provided j, Paret bv pue facilities of NASA/Goddard Spac
and the Computer Science Cent

9620—80-C€D01
Computer Suppore

& Flipghe Center
€ at the University of Marvland.




-
-

DR iU SAR AN N S I T R

-—

s
0
.

v

-



- . - . . §
Aa e i 20 it - e e i, Sp Sl b AR, 4, Pt ATt o il sp A Lo e pha gte phe g

ABSTRACT

Title of Dissertatlion: Evaluations of Software Technologles: Testing,
CLEANROOM, and Metrics

Richard Wayne Selby, Jr., Doctor of Phllosophy, 1985

Dissertation directed by:  Victor R. Basill
Professor and Chalrman
Department of Computer Sclence

\

The evaluatlon of software technologles suffers because of the lack of ujn-
tltatlve assessment of thelr effect on software development and modlﬂcat!oﬁ. A

seven-step approach for quantitatively evaluating software technologles coupies
/

software methodology evaluation with software measurement. The approach Is
Q

applled I\n-depth 1n:trh8“fcnowlng1m‘€é dareas. 1) Software Testlng Strategles: A
T4-subJect study, lncluding 32 professlonal programmers and 42 advanced
unlversity students, compared code reading, functional nesﬂng, and structural
testing 1n a fractlonal factorial design. 2) Cleanroom Software Development:
Fifteen three-person teams separately bullt a 1200-llne message system to com-
pare Cleanroom software development (In which software Is developed complete-
Iy off-1lne) with a more traditlonal approach. 3) Characteristle Seftware Netrice
Sets: In the NASA S.E.L. production environment, a study of 85 candldate pro-
duct and process measures of 852 modules from sIxX (51.000 - 112,000 line) pro-

Jects vielded a charactertstic set of software cost/quallty metrles. )

L
The malor results are the followlng. 1)’The approach deseribed for quantl-
[
tatively evaluating software technolcgles has been demonstrated and etfective In
Uist

~ ol

.»-.‘-' ".._

"" .. -‘:- B

LW

om0
EY Sy

SQratiry
Yol

des

2’

]




,/'

)
.

a varlety of problem domalns. }) WI1th the professlonals, code reading detected

- v
D)

Lot ]

more software faults and had a higher fault detectlon rate than dld functional
or structural testlng, whle -functional testlng detected more faults- than did

structural testing, but functlonal and structural testing were not different In

[T

o U R

-

fault detectlon rate. 3) WIth the students, the three techniques were not

,\j//‘l'll.., W

- differedt In the number of faults detected or In the fault detectlon rate, except
that structural testing detected fewer faults than did the others 1o one study

phase. 4) Code readlng detected more Interface faults and functional testing
. -

detected more control faults than dld the other methods. /5) Most developers

using the Cleanroom software development approach were able to bulld systems -

completely off-llne. 6) The Cleanroom teams' products met system requlrements

more completely and succeeded on more operational test cases than dld those

developed with a traditlonal approach.";’)\&n‘:pproach described for ecalculat-

. Ing a characteristic metric set ylelded the set™or the NASA S.E.L. environment j.-':.

{source llnes, deslgn effort, number of lnpun/out,p{m parameters, fault correctlon

effort per executable statement, code effort, number of versions}.

o
a

s,

riee

»
LY
-
-
-

b\
»

LR . A \'.'s.'-.--'- - T - e
LR PRI R, S VIR L P, PR P AT S 1




DO WP, S W T

ACKNOWLEDGEMENT

I greatly appreclate the opportunlty to have worked with people that are
shaping the frontler of the software englneering fleld. I wish to thank Larry S.
Davls, John D. Gannon, Harlan D. Millls, and Kent L. Norman for serving on
my committee and providing several lnsightful comments and suggestions. The
tdeas of code readlng by stepwlse abstractlon and Cleanroom software develop-
ment are those of Harlan D. Mllls, to whom I am grateful. I wish to thank F.
Terry Baker for his essential role in the collectlon ot a major portlon of the data
presented. The assistance provided by Frank E. McGarry and Jerry Page was
cruclal to the success of my analysis In the NASA Software Englineering Labora-
tory. I want to thank John D. Gannon for hls refreshing attitude and valuable
support. The members of our research group and several feilow graduate stu-
dents have offered encouragement and helpful critlclsms on this work. [ also
wish to thank Milchael E. Fagan. Davld H. Hutchens, and Marvin V. Zelkow!tz
for several enllghtenlng dlscusslons. A speclal appreclation goes to my advlsor,
Victor R. Baslll, whose motlvation, leadershlp. and splrlit made thls work poss!-

ble.

Thls research was supported 1n part by the Alr Forece OfMce of sclentifie
Research Contract AFOSR-F19620-80-C-001 and the Natlonal Aeronauties and
Space Admlnlstration Grant NSG-5123 to the University of Marviand, Com-
puter support provided In part by the facllitles of NASA/Goddard Space Fliois

Center and the Computer Selence Center at the University of Narvoan .

i

*
art

SrLSL LS
% <_

.

3
¥

" ’l .-

-y TS

)

R TS
y "4 8 CH
v ey A,




.
Table of Contents
"
$ 36134 ¢oTe 1111 A 1o} s RSOSSN 1 ;.
2 A Quantltatlve Approach for Evaluating Software Technologles ........... 4 p
2.1 Methodology for Data Collection and Analysls .iccviveieriicininreriinneennss 5 =3
2.2 Coupling Goals WIth Analysls MethodS .cceeviceireeeereerireereiirneriersenens 7 :
2.2.1 Forms of Result StatemMentsS ..iciicierieeiieiiiiiiirerieisiarreeiiieroianess 8
2.3 Analysls Classification SChHemMEe ...icevrirncirnersiceneniiiniiiionianiorsiisiieroecenes 10
2.4 Classlficatlon of Analyses Of SOftWATe ...cvcevierereitininiiiornsinessiciinrersenss 13
2.4.1 Blocked Subject-Project Studles .oivevieiiiericerieniireccerniacncncernnass 13
2.4.2 Repllcated Project StUAIeS iiveiciiiiieciintereirioriarosseseerascasssnsesaacens 16
2.4.3 Multl-Project Varlation Studles ccvevciiiriiieciiiaecioierienecsrananns 20
2.4.4 Single Project Studles .iviiiiiiiiiriiiiiiicei i e 22
3 Evaluation of Software Technologles: Problem Selectlon ...cccivecvvvnrennenens 24
I BICT-) (Tl A1) « WL Of o 11 -] o £ TN I 24 )
3.2 ANAlYSIS SeleClION ieirerreerereenerereensenrrosinsrassansessansssaressesnse e 26 5
3.2.1 Software Testing Strategy COMPATISON .ievieiirieriirnenrsiecsesansens 27 .
3.2.2 Cleanroom Development Approach ANAlysls .cccccceveveeerienenans 28 *
3.2.3 Characteristic Metric Set StUAY .cvvevveervereeemrrrnenoiiiiiererenresserenns 29 e
3.3 MethodoIoZY ADPICALION ctrrieiivirnertirereriteesrrneesiserasrtsserssesssnessonssnees 30 N
4 Evaluatlon of Software Technologles: Analysls and Results ....cccovevevninnen 31
4.1 Software Testing Strategy COMPATISON cicveverieenrerenrsaresrereecnsnarasracnnes 31
4.1.1 Testing TeChNIQUES vvcieicineiiiiaierreniieseinceratessnsasnserssecsosrcasnrsnns 32
4.1.1.1 Investligation GOAlIS .iiieiieiinrieiiriiierieentrericrentecsnnsennrnes 33
4.1.2 EMDPIrICal STUAY .iieiireiiineiiiiciiiiiaiirnietiicetoncsncnroeernsenensnnsnsnens 33
4.1.2.1 [teratlve EXperimentation .uiveeviveciieveiiimneneerrsererinnnens 36
4.1.2.2 Subject and Program/Fault Selection ..cooceevevveniennnen. 38 ¢
4.1.2.2.1 SUDJECIS terrrriiiereirieesirreeeeereeerrreeesereeee e, 37 :
D IRLRLILAN o8 o 114 e Y o 0B PN 30 R
$.1.2.2.3 FAUILS cevrevreeiieeriereeetneeneeeeneeetssessseesseenneens 41
4.1.2.2.3.1 Fault OTIZIN ceeeieeeereeeeenenn,s 41 "
4.1.2.2.3.2 Fault Classificatlon ............. 42
4.1.2.2.3.3 Faulr Descrlption ....vevenee. 4 ;
4.1.2.3 Experimental Deslgn i e 47 ‘_
4.1.2.3.1 Independent and Dependent \artabies o
.................................................................................................................... 18
iii




WRPLITIW A Y e gn . 8 ——
i "
: 3
; Fl:
. 4.1.2.3.2 Analysls of Varlance Model ..coccceerniinnnnen. 19 4
4.1.2.4 Experimental Operation ..cceccceiiciivenirniiieirnecenenceennennns 52 .
4.1.3 DALA ANALYSIS teirvreeeeerrenreerereseesseneereeeesaesestossssnnosseenssesessanessee 35 ~
4.1.3.1 Fault Detectlon EeCtIVENESS .vivveiiirnrrrreieerneernnenesneens 35 ::::
4.1.3.1.1 Data DISIIIDULIONS wuvueeeirvecenraneaaaernnarennnsnnns 56 \E
4.1.3.1.2 Number of Faults Detected .....cceuvuuriunnnen. 59
4.1.3.1.3 Percentage of Faults Detected ...c.cccenvueene. 80 ';f'
4.1.3.1.4 Dependence cn Software Type ...ccceenveennnee 81 N
4.1.3.1.5 Observable vs. Observed Faults ......ccceueies 82
4.1.3.1.8 Dependence on Program Coverage ........... 83 2
4.1.3.1.7 Dependence on Programmer Expertise s
.................................................. 64
4.1.3.1.8 Accuracy of Self-Estlmates ..ccccevvvnennrnennes 64
4.1.3.1.9 Dependence on Interactlons ..........eeeeeeee, 85 =
4.1.3.1.10 Summary of Fault Detection -
EfECtIVENESS tivvieereeervrnnnrerneesseneeeeasaenns 85 e
4.1.3.2 Fault Detectlon CoSt ...cccciiiveeneriinnireininiiiinnnieinn 86 ".'_'-'-
4.1.3.2.1 Data DIStIIDULIONS weevevirineeeiineninenneinnenns 87 i'_';_
4.1.3.2.2 Fault Detectlon Rate and Total Tlme "4
.................................................................................................................... 70
4.1.3.2.3 Dependence on Software TyDe .covecvecnrnennns T1
4.1.3.2.4 CoOmMPULEr COSUS .ivieriecrusanrarasiorssensasearaacnns 72 :
4.1.3.2.5 Dependence on Programmer Expertise
.................................................................................................................... 73 -
4.1.3.2.8 Dependence on Interactlons ......cccceeeeeeennes 74
4.1.3.2.7 Relationshlps Between Fault Detectlon
Effectiveness and COSU ccovcveviveniicreninnnenn. 74 .
4.1.3.2.8 Summary of Fault Detectlon COSt ....ccueu.. 75 )
4.1.3.3 Characterization of Faults Detected ..c.ccvveeeveenvnnennees 78 .
4.1.3.3.1 Omilsslon vs. Commlsslon Classlficatlon
4.1.3.3.2 SIx-Part Fault Classificatlon ....cecveevevinnnen. T
- 4.1.3.3.3 Observable Fault Classiflcation ........o.ee..e. 78
4.1.3.3.4 Summary of Characterlzation of Faults
Detected woiiririiiniirieeenreie e rereneenaenans 70
4,14 CONCIUSIONS tiitiiiiiiiiiiiiiir e e ea e ctrasetan e e eneaeereeensansansaeansanenns R0 "
4.2 Cleanroom Development ApProach ANAIVSIS civvoiiiiiviiiiiiieiieeeees <3
4.2.1 Cleanrcoom Software Development Methoud covviviiiiiviiniineininnnes <3
42,101 TnvestiZatlon GOals v iii e e ) .
4.2.2 Empirical study Using Cleanroomll v e S0
g
I 7]
i
oY

PRI IPOP M PRI R PPV




4.2.2.1 Case Study Description ...... evtterettetsaaasrestensteransasaneins
4.2.2.2 Operational Testing of ProJects ..cicicvevvecrercrerecrnianene.
4.2.3 Data Analysls and INterpretatIonN ..ievievcevceereecirierneeerescoraesacenees
4.2.3.1 Characterization of the Effect on the Product
DevelopPed .iiiiiiiiiiiiiiieitrerrtiestttertireitorenreraesasiarntsareaces
4.2.3.1.1 Operational System Properties .......ceeceeeen
4.2.3.1.2 Statlc System Properties ......ccccecevniiininnnes
4.2.3.1.3 Contributlon of Programmer Back-
ZPOUNA .ieciecenincrerenreconccnenrasrenaesnsansaseareone
4.2.3.1.4 Summary of the Effect on the Product
Developed ...cciceceiciiitrnnrniincnreeeiareecenecens
4.2.3.2 Characterization of the Effect on the Development
| 38 e T+ . T PP PR PTPPN
4.2.3.2.1 Summary of the Effect on the Develop-
MENG PrOCESS iieriiiiiiiiicireeienseereencesssnnns

....................................................................................................................

4.2.3.4 Distinction Among TeaAmMS .vuivecrreceresnaneerarnearsncasosasssnss

4.2.4 CONCIUSIONS iruviniuiruiirureeiniiieiniurcuscerierasisratresessaresionrssnsestasansases
4.3 Characteristic Metr{c Set STUAY .ciiicririiiiirciiiiiiiiirneieirerneciaeeeeiananees
4.3.1 Characteristic Software Metrlc SelsS ivvviviiiiiiiiieneiiiiciiriiiiinenienes
4.3.1.1 InvestiZation GOAIS .ivceveverrevrerrruereresnrisreresseeessnsenssanens

4.3.2 EmpIrical Study .oececvieiiioimiiiimieniitiii e e
4.3.2.1 SEL EDVIFONMENT teuvevreirrreerirerreeresserseenssseessessessessesns
4.3.2.2 Effort, Change, and Fault Data ....cccoccvveicieniniininnennn.

4.3.3 Data ABAIYSIS teiiiinireiiniitiieiieiecierrerrestcrstetsrnnensranensrnreerarsanes
4.3.3.1 Approach for Set Calculatlon .coivivviiiiiiiiinieiinnenrninnne.
4.3.3.1.1 An Alternate AppProach .covevveiirveeniienanenens

4.3.3.2 Applicatlon In the SEL EnvIronment ..ccovceveevveevinnennes
4.3.3.3 Use as a Management ToOOl .cvieiiiiiiiiiniiiiineniieninenenns

4.3.3.3.1 Condltional Probabliltles from Hlistor!-
CAl DAla tiiiiiiiiiiiei it eas

4.3.3.3.2 Data InterpretatloN .ocvvviviviieeeiniienierennenenes

4.3.4 CONCIUSIONS ittt e e tr e ae et ere e e st s enaes

I ORe) 1T R L) o U O POUORP PTUUPR T
3.1 Overall Results from the Software Technology Evaluatlons ...o.......
5.2 PrODIEIM ATEAS ittt ittt er et et e er st et ettt e e et eae et e eans

3.3 Overail ConCIUSIONS it e e e e e e e e

87
89
90

91
g1
95

103

123
1268
129
130
131

%
N

Pl o o o U
sl L) i

VA e
LA




MR I Y st o A B 2 Sk "R o "l "R g
.

: B A DDENAICES tevreureireriveeererieereriererieriersstasesasestenistesersssssnesnsnsnatasrernsenansiernaes 135
| 6.1 Appendlx A. Overview of Sampling and Statistical Test Appllca-
N 17 Vo ) « R PP 135
E: 8.2 Appendlx B. Programs Used In the Testing Strategy Comparlson
Y e bt eeeateeeeaeeteeaitee e et re e ettt aat e e e et e e s b e S at S e et e et ebe e s s e e e s e s s anesseanbees 137
i 8.2.1 Appendix B.1. The Speclficatlons for the Programs ......c........ 137
o 8.2.2 Appendix B.2. The Source Code for the Programs .....ccceeeveeene 143
E' 6.3 Appendlx C. Operatlonal Testlng Procedure Applled ln the
:Z CleanroOm STUAY .ccveeeverreememeriesererossiossssrssetsesnrsctarsssantvsasnsscnnsssnssnans 180
g 8.3.1 Test Data SeleCtiOn .c.iviiiiirerriiiiiinimeiiiciiiiiciiirisrieninieeee, 160
: 6.3.2 Testing Process and Fallure Observation .......ccceeeveverininenennnn. 166
8.3.3 Fallure COUDULINE tcceiivreiernerarircaciocrarasirocersssesecnsosssssosacsarasssnsansas 187
A 3431 () () o (LT T RSPV 169

vi




PP AR A AN A A e

List of Flgures

Flgure 1. Goal/questlon/metric paradigm.

Flgure 2. Categorization of analyses of software.

Figure 3. Three analyses selected.

Figure 4. Capabliltles of the testing methods.

Flgure 5. Structure of goals/subgoals/questions for testing experiment.

Flgure 8. Expertlse levels of subjects.

Figure 7. The programs tested.

Flgure 8. Programs tested 1n each phase of the analysls.

Figure 9. Distributlon of faults In the programs.

Flgure 10. Fault classiflcation and manlfestation.

Flgure 11. Fractlonal Factorlal Design.

Filgure 12. Overall summary of detectlon effectlveness data.

Flgure 13. Distribution of the number of faults detepted broken down by phase.

Flgure 14. Overall summary for number of faults detected.

Flgure 15. Overall summary of fault detection cost data.

Flgure 18. Dlistribution of the fault detectlon rate (z£faults detected per hour)
broken down by phase.

Flgure 17. Overall summary for fault detectlon rate (# faults detected per
hour).

—

rlzure 18, Characterization of the fanits detecied,




ARSI St s YA A SIS Sy e LAl o B e

AN Al S A L BRI A e v DA e Nl A e

Figure 18. Characterlization of the faults observable, but not reported.

Filgure 20. Framework of goals and questions for Cleanroom development ap-
proach analysls.

Flgure 21. Subjects’ professional experlence 1n years.

Fligure 22. System statistlcs.

Flgure 23. Requlrement conformance of the systems.

Flgure 24. Percentage of successful test cases during operational testing
(without duplicate fallures).

Filgure 25. Breakdown of responses to the attitude survey questlon, "'Dld you
feel that you and your team members effectlvely used off-llne review
technlques in testing your project?’.

Flgure 26. Connect tlme In hours during project development.

Flgure 27. Number of system releases.

Figure 28. Breakdown of responses to the attltude survey question, “'Dld vou
miss the satlsfactlon of executing your own programs?”'.

Filgure 29. Relatlonshlp of program size vs. mlsslng program executlon.

Figure 30. Breakdown of responses to the attitude survey question, ‘How was
vour destgn and coding styvle affected by not bLelng able to test and de-
bug?’’.

Figure 31. Breakdown of responses to the attltude survey questlon, “"Would vou
use Cleanroom agaln?™.

Figure 32, Summary of measure averaces and stenlficance levels.

ey v - ~ o ale . rraat Yo N . PENRY N B R .-
Framework of goals and questions for charactertstie ser srndy,

(o]

Fronure 33.

viit ']
R

R IR LTS
AP VYR VS U W VI VWS |

. ] e e e e S IR A oL
| U O AP S e W AR SR WU S W S W SR VR WP PN AP R R S UL VO VR PR TR VT




ARAL
\
.
.

o

4
:' Flgure 34. List of measures examlned In the SEL environment.
? Flgure 35. Condltlonal probabilitles based on SEL data: upper quartlles of
N dependent variables.
E Flgure 36. Conditlonal probabilities based on SEL data: lower quartlles of
b

dependent variables.
Flgure 37. Regular expresslon of loglical Ilnputs to the system In a single user ]
3 sesslon.

Flgure 38. Schedule of Dellverles for a Sample Team.

Flgure 39. Two Testing Schedules for a Sample Team.

Flgure 40. Arc Frequency Asslgnment as a Result of Stratification.

Flgure 41. Fallure Countling Issues.

At




1. Introduction

Computer sclence 1s both a theoretlcal sclence and a practlcal sclence. A

v e 3
D

h i "v ::":5

lot of work has been done studylng theoretical aspects of computer sclence:

L g 4

4 determining optimum algorithms, formulating mathematical models, proving

theorems, etc. However, [Ittle work has been done studylng the practice of com-

puter sclence — studylng how the dlscipline of computer sclence Is actually ap- -

plled.

There are several motlvations for studying the practice of computer scl-
ence. Programs In practice are different than those In theory. The programs
developed, malntalned, and managed In practice tend to be large, unwleldy, and

complex. Almost everyone assoclated with computer sclence has had an experl-

s

ence where he/she has sald, *“Walt a minute, that did not turn out the way that

I thought 1t would!™. Although there are insights Into how the theory applles In

practlce, these Insights have not always been correct. In the practice of com-

puter sclence, few objects are viewed in Isolation; there Is a complex Interaction

among the programmer, methodology-tool-technlque, and computer. For exam- "
ple. consider the area of software testing. The process of software testing has
existed a long tlme. Testing s the most common way to attempt to show that
a program does what 1t 1s Intended to do. Several theoretical results has been
published in the area of software testing. Yet, what Is the best way to test a
program - use a functlonal testing approach, a structural approach, a

nonexecutlon-based readlng process? The challenge Is that the best approach ls

AP IPAP SO ST




not known. How Is such a questlon answered?

The overall obJectlve of thls dissertatlon !s to examlne factors that contrl-
bute to software development and malntenance. The Investigations undertaken
adhere to two major themes. Flirst, the factors studled should have a high po-
tential beneflt to the process of attalnlng aspects of software quallty: require-
ment conformance, operatlonal rellablllty, and modiflable source code. Second,
the Investigations should capture the effect of the factors preclsely by character-

1zlng and evaluating them quantlitatively.

The three analyses presented are studles of 1) software testing, 2) Clean-
room software development (which will be described later), and 3) software
metrics. The three studles are Intended to advance the understanding of 1) the
contributlon of varlous software testing strategles to the software development
process and to one another; 2) the relatlonshlp between Introducing dliscipilne
Into the development process (as in the Cleanroom approach) and several as-
pects of product quallty (requirement conformance, operational rellability, and
modlflable source code); and 3) the use of software metrics to characterize soft-

ware eavironments and to predlet proJect outcome.

The evaluatlon of software technologles has suffered because of the lack of
quantitatlve assessment of thelr effect on software development and
modlficatlon. This dissertatlon describes a seven-step analysis methodology that
's Intended to structure the process of evaluatlng software technologles. The
analysls methodology provides a paradigm that Is applicable in a varlety of
problem domalns and 1s used In-depth 'n the three studles presented.

)
at

< e s o o




Sectlon 2 describes an approach for quantitatively evaluating software tech-
nologles and classifles previous studies of software. Sectlon 3 discusses the selec-
tlon of the three Investigatlons conducted. The problem formulation, data
analysls, and results from the three studles are presented In Section 4. Section

5 summarizes the concluslons from thls work.

TR

Ly

°Y ~
HY "- 5 "..‘f."'

.-
(3

4L 558
RIS

SR AN

‘,' »'_ [y

»’
.
»’




haciie SR Giiente. 4 Sl A0 Ah a4 e e A A A0 o iie gl pteriy foa Ainate gl g'e S dia gan gtacate S puuAle A i ed ntiad i SEad e/t ad

- 2. A Quantitative Approach for Evaluating Software Technologies

Several technlques and ldeas have been proposed to mprove the software
.. development process and the delivered product. There Is ilttle hard evlidence,
' however, of which methods actually contribute to quality in software develop-
ment and modlflcation. As a consequence, many management declslons and

research Issues are resolved by lpnexact means and seasoned Judgment, without

the support of appropriate data and analysls. As the software fleld emerges, the
need for understanding the Important factors in software productlon'contlnues
to grow. The evaluation of software technologles suffers because of the lack of
quantitatlve assessment of thelr effect on software development and

modification.

This dissertation supports the phllosophy of coupling methodology with
;:: measurement. That is, tleing the processes of software methodology use and
evaluatlon together with software measurement. The assessment of factors that
aflect software development and modificatlon Is then grounded 1n approprlate
measurement, data analysls, and result Interpretatlon. Thls section describes a
quantitatively based approach to evaluating software technologles. The formu-
latlon of probiem statements In terms of goal/question hlerarchles Is llnked with
measurable attrlbutes and quantltatlve analysls methods. These frameworks of
goals and questlons are Intended to outllne the potentlal effect a technology has

. on aspects of software cost and quality. Problem formulation Illnked with the

collectlon and analysls of appropriate data 1s pivotal to any management. con-




Lol Gl S Sl G Tl o A £ S Ar A G g o g Sl av e e sut aten ahe ed L SED AR S8

trol, or quallty Improvement process.

The analysls methodology described provides a framework for data collec-
tlon, analysls, and quantlitatlve evaluation of software technologles. The para- ';"
dlgm ldentifles the aspects of a well-run analysls and Is Intended to be applled
In different types of prcblem analysis from a varlety of problem domalns. The o
methodology presented serves not only as a problem formulatlon and analysls
paradigm, but also suggests a scheme to characterize analyses of software devel-
opment and modiflicatlon. The use of the paradlgm hlghllghts several problem

areas of data collectlon and analysls In software research and management.

The approach described for quantitatlve evaluation of software technologles
1) applles a seven-step methodology for data collectlon and analysls, 2) couples
problem formulation with quantitatlve analysls methods, and 3) suggests an
analysls classiflcatlon scheme. The followlng sectlons describe these aspects of

the approach.

2.1. Methodology for Data Collection and Analysis

The methodology described for data collectlon and analys!s has been qulte
useful. The methodology consists of seven steps that are listed below and dls-
cussed In detall 1n the followlng paragraphs (see also [Baslll & WWelss 84]). 1)
Formulate the goals of the data collectlon and analysis. 2) Develop a list of
specific questlons of Interest. 3) Establlsh appropriate metrics and data
categorles. +4) Plan the layout of the Investlgatlon, experimental desizn. and

statlstical analysis. 3) Deslgn and test the data collection scheme. 6) Perform




- V v - v - U h v v v . - - . - . .~ Y - - \ - . . . ‘ 1 - . l. - - ‘»'-‘.‘.Jw<'-‘

the investigation concurrently with data collectlon and valldation. 7) Analyze

and Interpret the data In terms of the goal/question framework.

A first step In a management Or research process Is to deflne a set of goals.
Each goal Is then refined Into a set of sub-goals that will contribute to reaching
that goal. This refinement process continues untll specific research questlons
and hypotheses have been formulated. Assoclated with ez;ch question are the
data categorles and particular metrics that wlll be needed In order to answer
that questlon. The Integratlon of these first three steps In 2
goal/question/metric hlerarchy (see Figure 1) expresses the purpose of an
analysls, defilnes the data that needs to be collected, and provides a context In

which to Interpret the data.

Figure 1. Goal/question/ metric paradigm.

Goals:

VA

In order to address these research questlons, Investigators undertake several

Qs

Metrics:

types of analyses. Through these analyses, they attempt to increase substantlal-
ly their knowledge and understanding of the varlous aspects of the questions.

The analysls process Is then the basls for resolving the research questlons and

v .
(IR

-

('lr.l'." N

F Sl g o AW ol S
2, 8 ag A G

- IS
AR
1] r . r 1%

B




LN N A AP A Sl

for pursulng the varlous goals. Before actually collecting the data, the data
analysls techniques to be used are planned. The appropriate analysls methods
may requlre an alternate layout of the investlgatlon or addltlonal pleces of data Q:;E
to be collected. A well planned Investigation facllitates the interpretation of the

data and generally Increases the usefulness of the results.

Once 1t 1s determlined whlch data should be gathered, the Investlgators
deslgn and test the collection method. They determlne the Informatlon that
can be automatically monltored, and customize the data collectlon scheme to
the partlcular environment. The several types of data that need to be collected =
usually requlre a data collection plan balanced across collectlon forms, automat-
ed measurement, and personnel Intervlews. After all the planning has occurred,
the data collection Is performed concurrently with the lnvesnlgamog and s ac-

companled by sultable data valldity checks.

[ T
Loty

s
'

As soon as the data have been valldated, the Investigators do prellminary
data analysls and screening uslng scatter plots and histograms. After fulfilling
the proper.assumptions, they apply the approprlate statlstlcal and analytlical
methods. The statistical results are then organlzed and Interpreted wlth respect
to the goal/questlon framework. More Informatlon Is gathered as the analysis

. process contlnues, with the goals belng updated and the whole cycle progressing.

2.2. Coupling Goals With Analysis Methods

Several of the steps In the above data collection and analysls methodology

Interrelate with one another. The structure of the goals and questions should be

~1

. T e e L T R P - - . ot .
AT ST e Sy . et el e L N N T U A A
BT R I N I I Sl S O TP R B PR B T T I S L S
Aot Bt B e et B B A A v S ad >, - S A o2 > A o e g




- coupled with the methods proposed to analyze the data. The paiticular ques-
tions should be formulated to be easlly supported by analysis technlques. In ad-
ditlon, questlons should conslder attributes that are measurable. MNost analyses
make some result statement (or set of statements) with a glven precislon about
the effect of a factor over a certaln domaln of obJects. Consldering the form of
analysls result statements wlll assist the formatlon of goals and questions for an
Investigation, and wlll make the statlstical results more readlly correspond to

the goals and questlons.

2.2.1. Forms of Result Statements

Conslder a questlon In an Investigatlon phrased as ““For oblects In the
domaln D, does factor F have effect S?"'. The corresponding result statement
could be "Analysls A showed that for oblects In the domaln D, factor F had
effect S with certalnty P.". In partlcular, a questlon could read 'For novice
programmers dolng unlt testing, does functlonal testlng uncover more faults
than does structural testing?’’. An appropriate response from an analysls may
then be *‘In a blocked sublect-project study of novice programmers dolng unlt
testlng, functional testlng uncovered more faults than dld structural testing (a

< .03).7

Result statements on the effects of factors have varylng strengths, but usu-
ally are elther characteristlc. evaluatlve, predictive, or directlve. Characteristlc
statements are the weakest. They describe how the oblects In the domaln have

chonged as a result of the factor. E.z.. A blocked subject-project study of no-

PEEAATRREN L




e e "HEETS Y E ¢

At CAR NN

O ]
. IR

RARR AN ~ PR ACA AL kg e

vice programmers dolng unlt testing showed that uslng code readlng detected
and removed more loglic faults than computation faults (¢ < .05)."" Evaluative
statements assoclate the changes In the objects with a value, usually on some
scale of goodness or Improvement. E.g., “"A blocked <ubject-project study of no-
vice programmers dolng unlt testing showed that using code readlng detected
and removed more of the expenslve faults to correct than dld functlonal testing
(o < .05)."" Predictlve statements are a stronger statement type. They describe
how obJects In the domaln will change if subjected to a factor. E.g., “*A blocked
sublect-project study showed that for novice programmers dolng unlt testlng,
the use of code reading wtll detect and remove more loglc faults than computa-
tlon faults (a@ < .05)."" Dlrectlve statements are the strongest type. They fore-
tell the value of the effect of applylng a factor to oblects in the domaln. E.g.,
“*A blocked sublect-projJect study showed that for novice programmers doing
unlt testing, the use of code reading will detect and remove more of the expen-
sive faults to correct than will functlonal testing (a < .05).”" The analysls pro-
cess then consists of an Investigatlve procedure to achleve the result statements
of the deslred strength and preclsion after conslidering the nature of the factors

and domalns Involved.

Glven any factor, researchers would llke to make as strong a statement
wlith as hlgh a preclslon about 1ts effect In as large 2 domaln as posslible. Unfor-
tunately, as the statement applles to an lncreasingly large domaln, the strength

of the statement or the precision with which we can make 1t may decrease. In

order for analyses to produce useful statements about factors In large domalns,

® 5 Nty

T
.

-."- 2 &

)




S arg an 6d She seaiin aud gt Seg srs Ra e S e B g g Guiind i Adh A S A anl i ko o

the particular aspects of a factor and the domalns of Its appllcatlon must be

well understood and Incorporated Into the Investigative scheme.

2.3. Analysis Classification Scheme

Two Important sub-domalns that should be consldered in the analysls of

factors In software development and modification are the individuals applying

T ARES S I RN S SR

the technology and what they are applying 1t to. These two sub-domalns will

. loosely be referred to as the ‘‘subjects,’”” a collectlon of (possibly multl-person)
:'.j- teams engaged 1n separate development efforts, and the *‘projects,”” a collection

of separate problems or pleces of software to which a technology 1Is applled. A

o general classificatlon of several software analyses In the lliterature can be ob-

talned by examining the slzes of these two sub-domalns that they consider.

)
L4 Y

h
)

% 10

-|
A
cod
-
&
-1
L




| PR S S S A S —— AhSataid

¥
P
0

Figure 2. Categorization of analyses of software.

# projects

one more than one
—+ + T
| | |
one | single project | mlti-project |
] | variation |
| l l
# teams per + ] ;
project | | |
| replicated | blocked |
more than | project | subject-project |
one | | [
+ — ;

Flgure 2 presents thls four part analysls categorizatlon scheme. Blocked
subject-project studles examine the effect of possibly several technologles as
they are applled by a set of sublects on a set of projects. If appropriately
conflgured. this type of study enables comparison within the groups of technolo-
gles, subjects, and prolects. In replicated project studles, a set of subjects may
separately apply a technology (or maybe a set of technologles) to the same pro-
Ject or problem. Analyses of thls type allow for comparison within the groups
of sublects and technologles (If more than one used). A multl-project variation
study examines the etfect of one technology (or maybe a set of technologles) as
applled by the same subject across several prolects. These analyses support the
comparison within groups of projects and technologles (If more than one used).
A single project analysls Involves the examlnation of one sublect apriving a

technology on a single project. The anaiysls must partition the asye-ts within

.....

PR

.

. R o S T S T e AN
aAa al L DL PR R VAPPSR PR VR PR L TR VR v DT R Y




L ek s el Al Mad ek LA Ma e T A o A SRS AL ik oA ube uih g SRSr aley-
PR P e B N .

Result statements of all four types mentioned above can be derlved from
' all these analysls classes. However, the statements wlll need to be qualifled by

L the domaln from which they were obtalned. Thus as the slze of the sampled

domaln and the degree to which it represents other populations increase, the

wider-reachlng the concluslon.

The next sectlon cltes several software analyses from the Ilterature and

classifies them according to thls scheme plctured In Flgure 2.




2.4. Classification of Analyses of Software

Several Investigators have published studles In the four general areas of
blocked subject-project, replicated prolect, multl-project variatlon, or single
project. The followlng sectlons clte analyses of the software development pro-
cess and product from each of these categorles. Note that surveys on experi-
mental methodology In emplrical studles have appeared In the literature 'Brooks

80, Shetl 81, Moher & Schnelder 82].

2.4.1. Blocked Subject-Project Studies

[Curtls et al. 79] describe two experiments Investlgatlng factors that
influence two aspects of software malntenance, understandlng existing programs
and accurately implementling modificatlons to them. The analyses Involved the
performance of 72 programmers operating on several verslons of programs !n
three general software classes. The factors examined Include control flow com-
plexity, vartable name mnemonlclty, type of modlification, degree of comment-
ing. and the relatlon of programmer performance to varlous complexity metrics.
They contlnued the l!nvestigatlon of how software characteristlcs relate to
psvchologlcal complexity 1n [Curtls, Sheppard & Milllman 79). This second pa-
per descrlibes a third experlment monitoring the abllity of 54 programmers to

detect different program bugs In distinct program verslons.

‘Hetzel 76] conducted a controlled experiment comparing ditferent software
testing technlques. The methods of functlonal testing, code reading, and a con-

trol Zroup iboth capabllities) were applled by 36 sublects to three diflferent pro-

13




“ e s
R

grams. In addltlon to describlng technlque performance, the testing strategles
were related to factors of programmer background, self estlmates of perfor-

mance, and attltude.

[Miara et al. 83] describe a study to determine the contribution of Indenta-
tlon to program comprehenslibility. The experlmental approach examlned the
factors of level and type of Indentatlon, as well as level of programmer experi-
ence. The understanding of seven different program varlations was obtalned by
a comprehension qulz and a sublectlve rating of how difflcult the program was

to comprehend.

[Welssman 74] described several experlments conducted to measure a
subject’s abllity to understand a program and his/her abllity to modify 1t. The
four areas of factors examlned Included aspects of program form, control flow,
data flow, and Interaction between control and data flow. The anumber of sub-
Jects studled ranged from 16 - 48. Each experiment used two dlfferent pro-
grams presented in varylng combinatlons of the above factors. The measure-
ments of understanding Included self—ev.aluatlons, fill-1n-the-blank qulzzes, pro-
gram hand slmulation, ablllty to modlfy the program, and comprehension
qulzzes. The experlments were conducted sequentlally to support the

refinement of an appropriate experimental methodology.

[Gould & Drongowsk! 74| exam!ned several factors related to computer pro-
gram debuggling: effect of debugging alds, effect of fault tvpe., and etfect of par-
ticular program debugged. Thirty experlenced programmers separately de-

bugged programs that contalned a single fault. Three classes of faults in four




aTs 2" 8

.

. B P P S S
PR RPN, D PR D VR Y

different one-page programs were used. Learnlng eflects were examined and
some possible “principles” of debugglng were Identifled. Conslstent resuits were
obtalned when the study was conducted on ten addltlonal experlenced program-

mers [Gould 75].

[Gannon & Horning 75] Investigated the factor of language design and lts
relatlon to the rellabllity of the resulting software. Nlne different language
modifications were made to a programming language based on a analysls of its
deficlencles. Two differently experlenced sublect groups completed Implementa-
tlons of two small but sophlsticated programs (75-200 Iine) in the orlginal
language and In 1ts modifled verslon. The performance of the redesigned
features In the two languages were contrasted In the frequency, vtype, and per-

sistence of faults In the programs written by the subjects.

(Soloway & Ehrlich 84] examlned two aspects of programming knowledge:
programming plans and rules of programming discourse. Programming plans
are generlc program fragments that represent stereotyplc actlon sequences In
programming. Rules of programming dlscourse capture conventlons In program-
ming and govern the composition of the plans Into programs. A total of 139
subjects partlclpated In an experiment that requlred them to flll-ln-the-blank In
programs selected from four different software types. Some of the programs
were wrltten to violate certaln hypothesized programmling plans and dlscourse
rules. A second simlilar study inovolving 41 professlonal programmers was con-
ducted. The results In general support the exlstence and use of such plans and

rufes by both novice and advanced programmers.

T A T S R

FETR PTG PEEY LS VI VT VAL TS W W T o o

.
v 2
»

e

r vV
Q100

3

s
[

e,

.

»
w'a'n o

Ao




Other blocked subject-project studles Include [Panzl 81, Woodfeld,

Dunsmore & Shen 81].

2.4.2. Replicated Project Studies

[Basill & Relter 81] present a study in which three different software devel-
opment approaches are analyzed and compared. Seven three-person teams used
a discipllned approach, slx teams used an ad hoc¢ approach, and six indlviduals
used an ad hoc approach. Each of the 19 separate development efforts lmple-
mented a 1200 llne compller project. Thls allowed a comi)arlson among the
dlfferent development approaches, as well as among usabllity of varlous metrics
for process measurement. A primary motlvation for the experlment was to
conflrm certaln bellefs of the beneflclal effects of a particular disciplined meth-
odology for software development. The researchers examined the factor of de-
velopment technlque and showed partlal support for some of the bellefs by cap-
turing several objectlve and automatable metrics of the development process

and product.

[Johnson, Draper & Soloway 83] descrlbe one of several studles done with
the intention of characterizing misconceptions made by programmers and how
they are manlfested as bugs In programs. In this work they Inspected the at-
tempted Implementations of an elementary problem by 204 novice program-
mers. They then classified the dlifferences between the lncorrect “"buggey’ pro-
grams and correct verslons of simllar striecture. The differences were explalned

relatlve to mistakes In “programming plans™ Intended by the Indlvidual [Solo-




way et al. 82]. Further work comparing the factor of design strategles of novice

and expert programmers Is underway [Soloway 83].
(Balley 84] presents prelimlnary observatlons from an experiment in which

the Ada programming language was taught in two different fashlons. ! One class
of subjects was first taught the high-level concepts supported In the language,
such as modular deslgn and data abstraction, and then taught the actual con-
structs and syntax of the language. The same material In a reverse order was
presented to a second class of subjects; that ls, constructs first and concepts
second. Thus the factor studled was order of presentation of materlal. In addl-
tlon to some prellmlnary eXxerclses and academic scores, the two groups were
compared on thelr abllity to apply Ada In the design (only) of a small software

system.

[Knight 84} examined the possibility of bullding ultra-rellable software sys-
tems by uslng N-version programming. The technique of N-version program-
ming [Kelly 82] uses a high-level driver to connect several separately deslgned
verslons of the same system. The systems then "vote™ on the correct solution,
and the solutlon provlded by the majority of the systems {s output. The study
examlned 37 separately deslgned verslons of the same 800 source llne svstem.
The factors examlned Included Indlvidual system rellabliity, total N-verslon svs-
tem rellabllity, and classes of faults that occurred In systems simultaneously.

{Gannon 77 Investigated the factor of static typlng in programming

languages. Two languages were generated which were essentially equlvalent ex-

! Adais a trademark of the U. S Dept. of Defense.

LAl o oA S AR a i i




;- cept for differences In the type conventlons: one was statically typed (with In-

s Ta Y W W v e

teger and string types) and the other typeless (e.g., arbltrary subseripting of

memory). A group of 38 sublects programmed the same problem In both
languages, with half dolng It in each order. The two languages were compared
\n the types of faults In the resulting programs, the number of runs contalning

faults, and the relatlon of subject experlence to fault proneness.

(Shnelderman et al. 77] examined the factor of detalled flowcharts as an ald -
to program composlition, comprehenston, debugging, and modlficatlon. A serles
of five experlments was conducted on groups of 33 - 70 subJects of novice to In-
termedlate expertise. A single program was used 1n all experlments except one,
which used two programs. All experlments compared the performance In varl- :
ous programmling tasks between groups that used some form of flowchart and
those that did not. The performance of the groups was measured by
comprehenslon qulz scores, correctness of programs wrltten, correctness of
modifications requested, and successful removal of seeded faults. No signlficant

differences were reported between groups that used and those that did not use '_'f.

flowcharts. -

[Parnas 72a] Investigated the factor of proper system modularity as a

means to ellminate the "integration phase” In development. A glven system

was decomposed Into flve modules, and four dlifferent types of Implementation

;: were speclfled tor each module. Twenty sublects then Independently developed
the distlnct !mplementations for the particular modules. At project completion. <

numerous comblinations of the modules were assembied to form separate ver-

18

. L T e e e e R
PSR W LI W . T o admdadens




slons of the whole system. The milnor effort required in assembllng the systems
evidenced support for the ldeas can formal speclficatlons and modularity dls-

cussed !n [Parnas 72b, Parnas 72c].

[Boehm et al. 84] Investigated the system development approachs of proto-
typing and speclfylng. Seven teams developed verslons of the same application
software system (2000 - 4000 llne); four teams used a requlrement/design
specificatlon approach and three teams used a prototyping approach. The final
prototyped products were smaller, required less development effort, and were
easler to use. The systems developed by speclficatlons had more coherent

deslgns, more complete functlonality, and software that was easler to Integrate.

[Myers 78] examlned the factor of program testing technlque and Its rela-
tlon to defect detectlon. f[he three technlques of 3-person walk-throughs, func-
tlonal testing, and a control group were compared !n the testing of a small (100
line) but nontrivial program. FIfty-nlne data processing professionals were used
as subjects. The technlques and thelr random palrings were compared In the
number of faults found and thelr cost-effectiveness. The single technlques were
not different In the number of faults they detected, while palrings of technlques

were superlor 1n terms of number of faults found.

Other repllcated proJect studles Include [Buck 81. Hwang 81, Hutchens &

Basil) 83!,

NSO Rt el St Suliial Sk Al Al Al A anfl Ah ond i C ol Sul o de il o

SN

AR

et
A
W

'l.l'
)

r




2.4.3. Multi-Project Variatio‘n Studies

[Walston & Fellx 77, Balley & Baslll 81, Baslll & Freburger 81, Brooks 81,
Baslll, Selby & Phlillips 83, Vosburgh et al. 84] are some of the numerous studles
that have examlned technological factors across several projects. The studles
that conslder separate development efforts coming from a slngle team or homo-
geneous environment genulnely belong o thls category. Those that consldered
projects from a collection of heterogeneous teams or environments, such as [Vos-
burgh et al. 84|, are placed here because they examined the differences In effect
of the factors, but not the teams or environments. The factors Investigated in-
clude structured programming, personnel background, development process and
product constralnts, project complexity, human and computer resource con-
sumptlon, prolect duratlon, staff slze, degree of management control, and pro-
ductlvity. In particular, [Balley & Baslll 81] mentlon 82 factors that could pos-
sibly affect project performance, lncluding 38 from [Walston & Fellx 77] and 18
from [Boehm 81]. They then describe a model generatlon process that uses a
base-llne of particular environmental aspects and captures dlfferences among
projects. The number of projects examlned ranges from 18 ln [Balley & Baslll
81} to 51 In [Walston & Fellx 77, Brooks 81]. Among other results. these studles
have led to Increased project vislblilty, greater understandlng of classes of ac-
tors sensltive to project performance., awareness of the need for project measure-
ment. and efforts for standardization of deflnitlons. Analyvsis has begun on In-
corporatlng prolect varlatlon Informatlon Into a management tool Basill X

Dcerflinger 83,

P Al sl oGl M M e A i Nl ooah LA Sl Al i . ASa gulh it b o oie S

[N A A

.- .
At e

[ 3 %

RSt

T




[

F. M RN NN A p-aay DAL v BRI A WA A des IV I 8 Sl AN S B g At ke e B b A VLA Ak St ad Aad At ad R ave aril el o ST SRR

r

[Bowen 84] examlned the factors of estlmating the number of resldual
faults In a system and of assessing the effectlveness of varlous testing stages.
The study was based on fault data collected from three large (2000 - 8000
module) systems developed In the Hughes-Fullerton environment. The study
partitioned the faults based on severity and analyzed the differences In estl-

mates of remalnlng faults accordlng to stage of testing.

[Adams 84] examlned the factor of managing preventlve service of software

products In operational use. Preventive service constitutes Installlng flxes to

faults that have yet to be dlscovered by particular users, but have been
dlscovered by the vendor or other users. The study developed means to estl-
mate whether and under what clrcumstances preventlvely flxlng faults in opera-
tional software In the fleld was appropriate. The fauit history for several large
products (e.g., operating system releases, major components thereof) was empiri-

cally modeled.

[Vessey & Weber 83| examlned the contributlon of several factors to soft-
ware malntenance: program complexlity, programming style. programmer quall-
ty, and number of system releases. A total of 447 commerclal and clerlcal
Cobol programs In operation In one Australlan organlzatlon and ln two U.S. or-
sanlzatlons were analyzed. The programs ranged from small to over 600 state-
ments. In the Australlan organizatlon program complexity and programming
strle slgnifleantly aflfecred the rate of malntenance repalr. In the U.S, orzaniza-
rtons the number of thmes a sysiem was released slunlfcantly affected the

malntenance repalr rate.




B A it A A A Aeh A e Ma e b e S SR Al

b
A
‘.

N 2.4.4. Single Project Studies "

(Endres 75, Baslll & Welss 81, Albln & Ferreol 82, Ostrand & Weyuker 83,

LA

Baslll & Perricone 84| present the analysls of the distributlon and relatlonships

Yo&d Lo,
ﬁ‘-.

derlved from change data collected durlng the development of a moderate to
large software project. On a wlithln project basis, they examined such factors as
the frequency and dlstributlon of faults durlng development, and thelr relation-
shlp with the factors of module slze, software complexity, developer’'s experl-
ence, method of detectlon and Isolatlon, phase of entrance 1nto the system and

observance, reuse of exlstlng design and code, and role of the requirements do-

v

cument. Although conducted on only a single project, such analyses have pro-

(e
b
o

e
v .

duced fault categorizatlon schemes and have been useful In understanding and

improving a development environment.

[Gannon et al. 83, Basill et al. 83] examlned a ground-support system wrlt- 5

- ten In Ada to characterize the use of Ada packages. Factors such as how pack- ::
age use affected the ease of system modificatlon and how to measure module

change reslstance were ldentifled, as well as how these observatlons related to

aspects of the development and tralning.

{Basill & Ramsey 84, Ramsey 84| Investigated the structural coverage of

functlonally generated {nput data. The functlonally generated acceptance test

X cases and a sample of operational usage cases were analyzed from a medlum-

D

sized (10.000 llne) satellite support system. The study examined the factors of

SRR Ay

tile structural coverage of functional acceptance testlng, the structural coveraze

o




AN e i e e M e e e e
AR R

SO AR

of operational product usage, the relatlonship between the program segments
covered In acceptance testing and those covered In usage, and the relatlonshlp

between structural coverage and fault detection.

.I
~
-‘
.
.
L.
LS
l..
w.
b
k

[éaker 72a] analyzed the effect of applylng chief programming teams and
structured programming 1n system development. The large (83,000 llne) system
discussed is known as The New York Times Project. The project served as a
fleld test for the new programming methodology concepts of structured code,
top down design, chlef programmer teams, and program librarles. Several
beneflts were ldentifled, including reduced development time and cost, reduced
tlme ln system Integration, and reduced fault detection In acceptance testlng

and fleld use.

- .

RN L S SR
it gie e adeddinn e S o Al el o4 o A o o e 4 2




LI S D S B I I LSRR S I

3. Evaluation of Software Technologies: Problem Selection

The approach described In the previous sectlon Is Intended to structure the
process of analyzing software technologlies by coupling software methodology
evaluation with software measurement. The paradigm Is applied In-depth In
three different analyses. In addltlon to evaluatlng software technologles, the
studles demonstrate the feasiblllty, utllity, and effectlveness of the quantitative
analysls paradlgm. Thls section descrlbes the selectlon of the different Investl-
gzatlons conducted. The selectlon criterla for all the studles is discussed first,

followed by an overview of each of the studles and how they apply the para-

dlgm.

3.1. Selection Criteria

Three different studles were chosen to satlsfy several criterla: scope of
evaluatlon, domaln sampling, quantitatlve analysls method, area of assessment,

scope of technology, and potential benefit.

1) Scope of Evaluation — Each of the analyses should be a dlstinct type of
study relatlve to the categorlzation of blocked subject-project, replicated pro-
Ject, multl-projJect wvariatlon, and slngle prolect. These dlfferent classes
represent dlfferent palrlngs of the domaln slzes of subjects and projects. Using
the paradigm in these dlfferent categories shows Its support for analysls of tech-

nologles across different scopes of evaluatlon.

2) Domaln Sampling — The samples chosen from the sublect and prolect

domalns In the studles should be representative of reasonably iarze populations.

24

R T P T UL IPUEE S
I T s T TR S T T PR ST VAN S A T e S S N SRt R TP N S

e
v

Ay b, oy )
L

..........



LA i A

Assessments using different slzes of software projects and different slzes of teams
should be chosen. The selection and analysis of approprlate samples facllltates
the extrapolatlon of the results to other environments, Increases the usefulness

of the results, and shows the performance of the paradlgm !in such situatlons.

3) Quantitatlve Analyslis Method - Each of the studles should utlilze a
different method of quantitative analysls. Statistical technlques provide a
soundly based, oblectlve, and usually automatable mechanlsm to accompllish
quantitative analysls tasks. Unfortunately, however, the amount of data re-
quired by some statistical approaches leaves them economlcally Infeasible. Even
with sufficlent data, the generated results may yleld unacceptable precision, too
much unexplalned variance, or doubt as to whether all the Ilmportant factors are
effectlvely captured. The use of thls evaluatlon paradlgm with a varlety of
quantitative methods demonstrates the flexIbllity of the approach across varyling

amounts and types of data.

4) Area of Assessment — The different problem areas Investigated should
not be preclsely understood areas of software development and modification.
The areas chosen should have open questlons and unresolved Issues. Selecting
problems wlith these attributes provides a scenarlo simllar to decision maklng si-
tuations in the fleld, where the proper outcome of the analysls Is not known be-

forehand.

3) Scope of Technology - The analyses should examlne technologies that
are have dlstinct scopes of usage during software development and modiflcation.

Three different scopes of usage for technologles are 4) Indlvidual technlque: a

25

AR RDREA

'




single technlque used In conjunction with other techniques durlng a software
project; b) development methodology: a system of methods that applles across
the whole software prolect development; and ¢) environment methodology: a
system of methods that applles across several prolects in a development or
modificatlon environment. Using the paradigm In these categorles demonstrates

1ts effectlveness for evaluatlon of technologles having varylng scopes of usage.

8) Potentlal Benefit - The analyses should address factors that can
significantly contribute to the quality of the software development process and
the developed product. The need for analysis of which factors contribute to
quallty In software development and mod!ficatlon i{s fundamental to the ad-
vancement of the fleld. The production of useful results from the use of the ap-

proach helps demonstrate its merlt.

3.2. Analysis Selection

From the above set of criteria, three analyses were selected: 1) a comparis-
on of software testing strategles; 2) an analysis of Cleanroom software develop-
ment; and 3) a calculatlon of a characteristlc software metrlc set. Flgure 3 sum-
marlzes these studles relatlve to the criterla explalned. Recall the use of the
syvmbels from the previous sectlon describlng the gquantitative methodelogy: D
for domaln sampled, F for factor or technology analyzed. and S for result state-
ment type. As displayed In the figure, the above set of criteria are satlsfled by
the partlcular analyses selected. The following three sections discuss the appil-

cation of the approach in the particular studles.

PN




PG S PR, VL T U S P L AR

Figure 3. Three analvses selected.

Testing Study

Cleanroom Study

Characteristic Sert,

Scope of Evaluation | blocked subject- repllicated multi-project
prolect projlect varlatlon
Subject Domalns
Sampled (D ;)
Number 74 13 small teams 1 medlum
Indlviduals (3-person) environment
(23-person)
Expertise Junlor — Junlor - Junlor -
advanced intermedlate advanced
Prolect Domalns
Sampled (D ,)
Number 4 1 6

Size unit small system large system
(180 - 350 LOC) (1200 LOC) (51,000 - 112,000
LOC)
Quantitative fractional non-parametric factor
Analysis Method factorial statlstics analysls
design
Area of defect project project
Assessment detection development manacement
Scope of Indlvidual development environment |
Technologles technlque methodology methodology
Factors (F) code readlng Cleanroom SEL
functional testlng development environment
structural testing tradltional
development
Potential increase Increase product better projlect
Benefit effectiveness quallty and monltoring and
of defect process control control
detectlon |
Result characteristlc characterlstle characteristic \
Statements (3) evaluatlve evaluative evaluative [
predictive predictive predlictive !

3.2.1. Software Testing Strategy Comparison

The software testing strategy analyvs!s s

) 1
vhich

T4 Individuals applled 3

T RS .

5

qlTerent

MRS PR AT W STV W o

resting technlaques -

AP AP W

a4 biocked subject-prolect sty in

SCiT-

4 Aliferens




ware types. The Individuals (domain Dl) were selected from the populations of

',' PRRAA

(N
’.
o

& Junlor, Intermedlate, and advanced programmers, and the programs tested
(domaln D ,) were of unlt slze and were selected from four populatlons of soft-
ware types. The programs had a distribution of faults that commonly occur in
software. A serles of fractlonal factorial designs was employed In the analysls. By
Software testlng and defect detectlon are lnexact and not very well understood
areas of software production. Yet the actlvitles of testing and defect detectlon ;
are essentlal to the success of a software project. The three indlvidual tech-
niques {factors F) examlned were code readlng, functlonal testing, and structural
testing. Result statements (statement strengths S) characterizlng, evaluating,
and predlcting the effect of each of these technlques are Intended from the
- analysls. The major area of beneflt from the analysls willl be increasing the
effectlveness of software testlng and defect detection. The goals of this study
are to contrast the strategles In three different aspects of software testing: 1)
fault detectlon effectiveness, 2) fault detectlon cost, and 3) classes of fauits

detected.

3.2.2. Cleanroom Development Approach Analysis

The Cleanroom development approach analysls Is a replicated project study
In which 15 small teams (3-person) separately applled two different software de-
velopment methodologlies to bulld versions of the same small message system:
ten teams applled Cleanroom, whlle flve applied a more tradltional approach. 'l:l

The Indlviduals (domaln D ;) were selected from the populations of Junlor and

PP D FRF PPN SRy W DU PR UL UL WAL SR I, ISP




Intermedlate programmers, and the system bullt (domaln D ,) was a small sys-
tem selected from the populatlon of small systems of moderate complexlity.
Non-parametric statlstics were applled to contrast the performance of the two
development methodologles. The outcome of a software project Is largely a
functlon of the development methodology used, and the software communlty Is
uncertaln which development approaches conslstently produce a quallty pro-
duct. The two development methodologles (factors F) examlned were Clean-
room software development and a tradltlonal team methodology. The Clean-
room software development approach Is Intended to produce highly rellable soft-
ware by Integrating formal methods for specificatlon and design, complete off-
Ilne development, and statlstically based testlng. Result statements (statement
strengths S) characterizing, evaluating, and predicting the effect of the two de-
velopment methodologles relatlve to one another are Intended from the analysls.
The malor area of beneflt from the analysls will be Increasing product quallty
and development process control. Thls study analyzes the effect of Cleanroom,
relative to a tradltlonal approach, on the delivered product, the software devel-

opment process, and the developers.

3.2.3. Characteristic Metric Set Study

The characteristic metric set analysis 1s a multl-project variation study In
which one development environment applled Its methodolegy to 6 software pro-
Jects. The environment (domaln D,) was selected from the populatlon of pro-

ducrlon environments, and the projects developed (domaln D ,) were larze sys-

-, - - - -

> -

Y

il

_‘ 2 A P

-reoe

Y r. s

Yt




tems selected from the populatlon of large, moderately complex software sys-
tems. The quantitative analysls method used was factor analysis. The manage-
ment of software prolects Is a challenglng and ill-defilned task. Better monltor-
ing and control of software projects lead to more successful project manage-
ment, and posslbly higher product requirement conformance and rellablllity.
The environment methodology (factor F) examined was the environment meth-
odology of a NASA Goddard production environment. Result statements (state-
ment strengths S) characterizing, evaluating, and predlcting the effect of the
particular environment methodology on projects are Intended from the analysis.
The major area of beneflt from the analysls will be lncreasing the ablllty to
monltor and control software projects. The goals of thls study are to 1) develop
an approach for customlzing a characteristic software metric set to a particular
environment; 2) calculate the characteristic metric set for a NASA Goddard en-

vironment; and 3) examlne the usablllity of thls approach as a management tool.

3.3. Methodology Application

The three analyses described above are Intended to advance the under-
standlng of factors that contribute to quallty In software development and
modtiflcatlon. The next section presents the In-depth analysls for each of the
studles, Including the goal/questlon framework, appropriate software metrics,

data analysls, and results.

30

. e e Te w v e
R SR

T
e e
aaa’aala 4l

1 -

7 N B S SO Y

M » . AN
N LA e

T
A

S
PR
2 PO S




a
v

[N

4. Evaluation of Software Technologies: Analysis and Results

The following sections present three studles In which the quantitative

ERICIC I
Gt e

.
DR

Vet

{ methodology described earller Is applled: a blocked subject-project study com-

paring software testing strategles, a replicated project study characterizing the

s 1

N effect of uslng the Cleanroom software development approach, and a multl- S

LA

project varlatlon study to determline a characteristic set of software cost and

quallty metrics.

4.1. Software Testing Strategy Comparison -

e

The processes of software testing and defect detection continue to challenge
the software communlty. Even though the software testing and defect detection
activities are Inexact and lnadequately understood, they are cruclal to the suc-
cess of a software projJect. The controlled study presented addresses the uncer-
talnty of how to test software effectively. In this Investlgation, common testing
technlques were applled to different types of software by sublects that had a
wlde range of professlonal experlence. Thls work Is Intended to characterlze :L‘
how testing effectlveness relates to several factors: testing technique, software
type, fault type, tester experlence, and any lnteractlons among these factors.
Thls examination extends previous work by Incorporating different testlng tech-

nlques and a greater number of persons and programs. whlle broadenlng the

S, e ey

':, scope of Issues examlined and adding statlistical slgnlficance to the conclusions. :

This sectlon describes the testlng technlques examlined., the lavestlgation

goals, the experimental design. operation. analysls, and ronclusions.

- 31

A L A . . L. Co L e e e e At e « e et IR
ST e el e - e . . et e

...... -

- A e R A R S A
.- V. PP WP T G S P

A




" 4.1.1. Testing Techniques

.A- L L

To demonstrate that a partlcular program actually meets 1ts speclfications,
professional software developers currently utilize many different testing ‘4
methods. Before presenting the goals for the empirical study comparing the po-
* pular technlques of code readlng, functional testing, and structural testing, a ' .
. descriptlon will be glven of the testing strategles and thelir different capabliltles
(see Figure 4.). In functional testing, which Is a “*black box™ approach {Howden
80|, a programmer constructs test data from the program's specification through
methods such as equlvalence partitionlng and boundary value analysls [Myers

79]. The programmer then executes the program and contrasts 1ts actual

P ARALS

behavlor with that indlcated In the speclificatlon. In structural testing, which Is

e

a “'white box™ approach {Howden 7S, Howden 81|, a programmer lnspects the
source code and then devlses and executes test cases based on the percentage of
the program'’s statements or expresslons executed (the ‘‘test set cove~rage”)
[Stuckl 77]. The structural coverage criterla used was 1009% statement cover-
age. In codg readlng by stepwlse abstractlon, a person ldentifles prime subpro-
grams In the software, determlnes thelr functlons, and composes these functions i
to determine a functlon for the entire program [Mllls 72a, Linger, Mills & Wity

79]. The code reader then compares thls derlved function and the specificatlons

(the !ntended functlon). In order to contrast these various strategles, an emplirl-

L)
5

» cal study has been conducted using the technlques of code reading, functional K

testing, and structural testing. i

R N N AT
LTS Y TP Y TR




Flgure 4. Capabllities of the testing methods.
code readlng functlional structural
testing testing
vlew program
specification X X X
view source
code X X
execute
program X X

4.1.1.1. Investigation Goals

The goals of thls study comprise three different aspects of software testing:
fault detection effectlveness, fault detectlon cost, and classes of faults detected.
An applicatlon of the goal/question/metric paradigm [Baslll & Selby 84, Basll!
& \Welss 84| leads to the framework of goals and questlons for thls study ap-

pearing \n Flgure 5.

The first goal area 1s performance orlented and Includes a natural first
question (I.A): which of the technlques detects the most faults \n the programs?
The comparison between the technlques 1s belng made across programs, each
with a different number of faults. An alternate Interpretatlon would then be to
compare the percentage of faults found In the programs (question [.A.1). The
number of faults that a technlque exposes should also be compared; that ls,
faults that are made observable but not necessarlly observed and reported by a
tester ([.A.2). Because of the dlifferences In types of software and In testers’

abllitles, 1t s relevant to determline whether the number of faults detecrted Is el-

W




ther program or programmer dependent (I.B, I.C). Since one technlque may
find a few more faults than another, It becomes useful to know how much effort
that technlque requlires (II.A). Awareness of what types of software requlre

more effort to test (II.B) and what types of programmer backgrounds requlre

Woas, 0 N s

less effort in fault uncovering (II.C) Is also quite useful. If one s Interested in
detecting certaln classes of faults, such as In error-based testing [Foster 80,
Valdes & Goel 83], 1t Is approprlate to apply a technlque sensltlve to that par-
ticular type (III.A). Classifying the types of faults that are observable yet go

unreported could help focus and increase testing effectiveness (IIL.B).

Figure 5. Structure of goals/subgoals/questions for testing experiment.

I. Fault detectlon effectiveness

A. For programmers dolng unlt testing, whlich of the testlnz technlques
(code readlng, functlonal testlng, or structural testlng) detects the
most faults In programs?

1. Which of the technlques detects the greatest percentage of faults In
the programs (the programs each contain a different number of
faults)?

2. Which of the technlques exposes the greatest number (or percentage) -
of program faults (faults that are observable but not necessarlly "
reported)?

B. Is the number of faults observed dependent on software tyvpe” f:‘

C. Is the number of faults observed dependent on the expertise level of the
persen testing?

II. Fault detectlon cost N

A. For programmers dolng unlt testlng, whlch of the testing technlques
(code reading. functlonal testing, or structural testlng) detects the

34

T P SAD U PPN I S




A A S g g S Ao it g

faults at the highest rate (#faults/effort)?

B. Is the fault detection rate dependent on software type?

L I

C. Is the fault detectlon rate dependent on the expertise level of the person
testing?

~
-

III. Classes of faults observed

A. For programmers dolng unlt testing, do the methods tend to capture
different classes of faults?

B. What classes of faults are observable but go unreported?

4.1.2. Empirical Study

Admlttedly, the goals stated here are quite ambitious. In no way is 1t im-
plled that thls study can definitlvely answer all of the;e questions for all en-
vironments. It Is Intended, however, that the statistlcally signlficant analysis
presented lends lnsights Into thelr answers and Into the merlt and approprlate-
ness of each of the technlques. Note that thls study compares the individual
appllicatlon of the three testing technlques In order to ldentify thelr dlistinct ad-
vantages and dlsadvantages. Thls approach 1s a first step toward proposing a
composlte testlng strategy, which possibly Incorporates several testing methods.
The followlng sectlons describe the emplirical study undertaken to pursue these
goals and questions, Includlng the selectlon of sublects, programs, and exper!-

mental design, and the overall operation of the study.

LU PR AR W AP SIRE A P Y

ATy T IR CPTPCIY AN




4.1.2.1. Iterative Experimentation

The emplrical study consisted of three phases. The first and second phases
of the study took place at the Unlversity of Maryland 'n the Falls of 1982 and
1983 respectively. The third phase took place at Computer Sclences Corpora-
tlon (CSC - Sliver Spring, MD) and NASA Goddard Space Flight Center
(Greenbelt, MD) In the Fall of 1884. The sequentlial experimentation supported
the lteratlve nature of the learning process, and enabled the Inltlal set of goals
and questlons to be expanded and resolved by further analysis. The goals were
further reflned by discusslons of the prelimlnary results [Selby 83, Selby 84].
These three phases enabled the pursult of result reproducibllity across environ-

ments having subjects with a wide range of experlence.

4.1.2.2. Subject and Program/Fault Selection

A primary consideration In thls study was to use a reallstic testlng environ-
ment to assess the effectiveness of these different testing strategles, as opposed
to creatlng a best possible tesiing sltuatlon [Hetzel 76]. Thus, 1) the sublects
for the study were chosen to be representative of dlfferent leveis of expertlse, 2)
the programs tested correspond to different types of software and reflect com-
mon programming style, and 3) the faults In the programs were representatlve
of those frequently occurring In software. Sampling the sublects, programs, and
faults {n thls manner Is Intended to evaluate the testing methods reasonably,

and to facllltate the generallzatlon of the results to other environments.

36




-

PR Nt ht pien)

4.1.2.2.1. Subjects

The three phases of the study Incorporated a total of 74 sublects; the Indl-
vidual phases had 29, 13, and 32 sublects respectively. The subjects were
selected, based on several criterla, to be representative of three different levels
of computer sclence expertise: advanced, Intermedlate, and Junlor. The number

of subjects In each level of expertise for the different phases appears In Flgure 8.

Flgure 8. Expertlse levels of sublects.

Phase
Level of 1 2 -3 total
Expertlse (Unlv. Md) (Unlv. Md) (NASA/CSC)
Advanced 0] 0 8 8
Intermedlate 9 4 11 24
Junlor 20 9 13 42
total 29 13 32 74

The 42 subjects In the flrst two phases of the study were the members of
the upper level *Software Deslgn and Development™ course at the Unlversity of
Maryland 1n the Falls of 1982 and 1983. The Indlviduals were elther upper-level
computer sclence majors or graduate students; some were worklng part-tlme
and all were In good academlc standing. The toplics of the course included
structured programmling practices, functional correctness, top-down deslgn.
modular speclfication and deslgn. step-wise refilnement. and PDL, In addition to
the presentation of the technlques of code readlng, functlonal testing, and struc-
tural testing. The references for the testing methods were [Mills 73, Fagan 76,
Myers 79, Howden R0], and the lectures were presented by V. R. Baslll and F.

T. Baker. The subjects from the Unlversity of Maryvland spanned the Inter-

ol

"i'{.f v‘ ‘l

PN

Ty T Ty
A A

A



- . “ T e YL Te . v . -
el e el aae ot ot ot ot ot

medlate and Junlor leveis of computer sclence expertise. The assignment of in-
dividuals to levels of expertise was based on professional experlence and prior
academlc performance in relevant computer sclence courses. The indlviduals in
the first and second phases had overall averages of 1.7 (SD = 1.7) and 1.5 (SD
= 1.5) years of professional experience. The nine Intermedlate subjects In the
first phase had from 2.8 to 7 years of professional experlence {average of 3.9
years, SD = 1.3), and the four in the second phase had from 2.3 to 5.5 years of
professional experlence (average of 3.2, SD = 1.5). The twenty Junlor subjects
In the first phases and the nlne In the second phase both had from O to 2 years
professional experience (averages of 0.7, SD = 0.6, and 0.8, SD = 0.8, respec-

tively).

The 32 subjects In the third phase of the study were programming profes-
slonals from NASA and Computer Sclences Corporation. These indlividuals
were mathematiclans, physiclsts, and englneers that develop ground support
software for satellites. They were famlllar with all three testing techniques, but
had used functional testing primarlly. A four hour tutorial on the testing tech-
nlques was conducted for the subjects by R. W. Selby. Thls group of subjects,
examlined 1n the third phase of the experiment, spanned all three expertise levels
and had an ove.rall average of 10.0 (SD = 5.7) years professlonal experlence.
Several criterla were consldered In the assignment of subjects to expertlse levels,
Includlng years of professional experience, degree background, and thelr
manager's suggested asslgnment. The elght advanced subjlects ranged from 9.5

to 20.5 vears professional experlence (average of 15.0, SD = 4.1). The eleven

38

o T T W W Y W N W W W e —rr

Y :‘{t":"‘l-

v 'v-:v‘

'S



Intermediate subjects ranged from 3.5 to 17.5 years experience (average of 10.9,
SD = 4.9). The thirteen Junlor subjects ranged from 1.5 to 13.5 years experi-

ence (average of 6.1, SD = 4.4).

4.1.2.2.2. Programs

The experimental design enables the distinctlon of the testing technlques
while allowing for the effects of the different programs being tested. The four
programs used In the investigatlon were chosen to be representative of several
different types of software. The programs were selected speclally for the study
and were provided to the subjects for testing; the subjects dld not test programs
that they had written. All programs were written In a high-level language with
which the sublects were famlillar. The three programs tested In the CSC/NASA
phase were written In FORTRAN, and the programs tested in the Unlversity of

Maryland phases were wrltten l_n the SImpl-T structured programming language

[Basilt & Turner 78]. 2 The four programs tested were P ) a text processor, P )
a mathematlcal plotting routine, P ,4) a numerlic abstract data type, and P4) a
database malntalner. The programs are summarlzed in Flgure 7. There exists
some differentlation in slze, and the programs are a reallstlc slze for unlt testing.
Each of the subjects tested three programs, but a total of four programs was
used across the three phases of the study. The programs tested In each of the

three phases of the study appear In Flgure 8 The speclificatlons for the pro-

2 S1mpl-T Is a structured language that supports several string and flie han-
dllng primltlves, In addltlon to the usual control flow constructs avallable, tor
example. In Pascal.

39

e e T e e T e e e S e e e e T e A e e L.
WERTE IS TS VLIS PSS FS TGS PR TV TR FLPE IS P rTisit vrrr s v T rrav rswa v ve

v e
v
()

IR
.
‘v 's

.

AT A

) '{ r,




grams appear In Appendlx B.1, and thelr source code appears |n Appendix B.2.

Gerhart 75].

Flgure 7. The programs tested.
source | executable | cyclomatic | #routlnes | #faults
program lines statments complexity
P, - text 169 55 18 3 9
formatter
P , - mathematical 145 95 32 8 6
plotting
P 4 - numerlc data 147 48 18 9 7
abstraction
P, - database 385 144 57 7 12
malntalner
&ure 8. Pr%rams tested In each phase of the analysls.
Program Phase
1 2 3
(Univ. Md) | (Unlv. Md) | (NASA/CSC)
P , - text formatter X X X
P , — mathematlcal plotting X X
P 4 - numerlc data abstractlon X X
P, - database malntalner X X

The flrst program 1s a text formatting program, which also appeared In

Myers 78).

A verslon of thls program, originally written by [Naur 89] uslng

technlques of program correctness proofs, was analyzed In [Goodenough &

The second program 1s a mathematlcal plotting routine. Thls pro-

gram was written by R. W, Selby, based roughly on a sampie program In {Jen-

sen & Wirth 74]. The third program Is a numerlc data abstractlon conslisting of

a set of lIst processing utllitles.

by a member of an Intermedlate level programmling ccurse at the Unlversity of

Maryland. [MeMullln & Gannon $0i. The fourth program s a malntalner for a

40

This program was submitted for a class project

el ek ol g 0o o g -

Te
Pyl




CEEE AN . RN Rl ol SVEEME Pl adie. o g i bal JARt SR i

database of bibllographlc references. This program was analyzed In [Heuzel 78],
and was wrltten by a systems programmer at the Unlversity of North Carollna

computation center.

Note that the source code for the programs contalns no comments. Thls
creates a worst-case situation for the code readers. In an environment where
code contalned helpful comments, performance of code readers would likely Im~
prove, especlally If the source code contalned as comments the Intermedlate
functlons of the program segments. In an environment where the comments

were at all suspect, they could then be ignored.

4.1.2.2.3. Faults

The faults contalped In the programs tested represent a reasonable dlstrl-
bution of faults that commonly occur in software [Welss & Basill 85, Baslll &
Perricone 84|. All the faults in the database malntalner and the numerlc
abstract data type were made durlng the actual development of the programs.
The other two programs contaln a mlx of faults made by the original program-
mer and faults seeded In the code. The programs contalned a total of 34 faults;
the text formatter had nine, the plotting routine had six, the abstract data type

had seven, and the database malntalner had twelve.

4.1.2.2.3.1. Fault Origin

The faults in the text formatter were preserved from the article In which It
appeared Myers 78], except for some of the more controversial ones [Callllau &

Rubln 79]. In the mathematlcal plotter, faults made during program translation

41

AT A L S N I PSP N
a gy gty e Uy e e gt e e N T gt

¥ o1t ¢ 1
>

£ T




T e e e e e e T T e T et e e e
CP PR VR SR S, PLPEARE R PP WP IPT WL R L WS VAL PR WPy

were supplemeﬁced by addltlonal representatlve faults. The faults In the
abstract data type were the origlnal ones made by the program's author durlng
the development of the program. The faults In the database malntalner were
recorded durlng the development of the program, and then relnserted Into the
program. The next sectlon describes a classification of the different types of
faults In the programs. Note that thls Investigation of the fault detectlng ablll-
ty of these technlques involves only those types occurring In the source code,

not other types such as those in the requlrements or the speclficatlons.

4.1.2.2.3.2. Fault Classification

The faults In the programs are classifled according to two different abstract
classlficatlon schemes [Basill & Perricone 84]. One fault categorizatlon method
separates faults of omlsslon from faults of commlsslon. Faults of commission
are those faults present as a result of an Incorrect segment of exlsting code. For
example, the wrong arlthmetic operator Is used for a computation In the right-
hand-side of an assignment statement. Faults of omlsslon are those faults
present as a result of a programmer’'s forgetting to include some entity In a
module. For example, a statement s missing from the code that would asslgn

the proper value to a varlable.

A second fault categorlzation scheme partitlons software faults Into the six
classes of 1) Inltlallzatlon, 2) computation, 3) control. 4) Interface, 5) data. and
8) cosmetlc. Improperly Inltlallzing a data structure constitutes an !nitlallzatlon

fault. For example, asstgning a varlable the wrong value on entry to a module.

Aalalh St At Sete Al o Autd Aok el Bl Sl adh B aad 204 b A ndand




_______

Computation faults are those that cause a calculatlon to evaluate the value for
a varlable Incorrectly. The above example of a wrong arithmetic operator In
the right-hand-side of an asslgnment statement would be a computation fault.
A control fault causes the wrong control fiow path In a program to be taken for
some lnput. An Incorrect predlcate In an IF-THEN-ELSE statement would be a2
control fault. Interface faults result when a module uses and makes assump-
tlons about entities outside the module's local environment. Interface faults
would be, for example, passing an incorrect argument to a procedure, or assum-
Ing In a module that an array passed as an argument was fllled with blanks by
the passing routine. A data fault are those that result from the incorrect use of
a data structure. For example, Incorrectly determining the Index for the last
element in an array. Flnally, cosmetle faults are clerlcal mistakes when enterlng

the program. A spelling mistake In an error message would be a cosmetlc fault.

Interpreting and classifylng faults in software i1s a difficult and Inexact task.
The categorization process often requires trying to recreate the original
programmer's misunderstanding of the problem [Johnson, Draper & Soloway
83]. The above two fault classlficatlon schemes attempt to distingulsh among
different reasons that programmers make faults in software development. They
were applled to the faults in the programs ln a consistent nterpretation: it Is
certainly possible that another analyst could have Interpreted them dlfferently.
The separate appllcatlon of each of the two classificatlon schemes to the faults
categorized them In a mutually excluslve and exhaustlve manner. Flgure 9

displays the distributlon of fauits In the programs accordling to these schemes.

43

P T S P N

\
VAT ey e e Te T ey
PN PR NPV AN e IR

: o
55\-

PN




Flgure 9. Distributlon of faults In the programs.
Omilssion Commlission | Total

Initlalization 0 2 2
Computation 4 4 8
Control 2 5 7
Interface 2 11 13
Data 2 1

Cosmetlc 0 1 1
Total 10 24 34

4.1.2.2.3.3. Fault Description

The faults In the programs are descrlbed In Figure 10. There have been

varlous efforts to determlne a preclse counting scheme for ‘*defects™ 1n software

[Gloss-Soler 79, IEEE 83]. According to the explanatlons glven, a software

“fault’’ 1s a speclfic manlifestatlon In the source code of a programmer ‘‘error.”’

For example, due to a mlsconception or document dlscrepancy, a programmer

commlts an ‘‘error’” (In hls/her head) that may result In more than one ‘‘fault’

In a program. Uslng thls Interpretatlon, software ‘‘faults’ reflect the correct-

ness, or lack thereof, in a program. The entltles examined In thls analysls are

software faults.

Flgure 10. Fault class!ficatlon and manifestation.

FaultProgram Omlssion/
Commission

Class

Description

PR N S
“c . AT e Y. Al e e
APy Yoy SRy SNy DU W B

44




. a P1 omlisslon control a blank Is printed before the first word
on the first llne unless the first word 1Is
30 characters long; In the latter case, a
blank 1lne s printed before the first

word

b P1  commlission Inftializationthe character & (not $) Is the new-llne
character

c P1 commIission Initlallzatlonthe line size 1s 31 characters (not 30);

thls fault causes the references to the
number 30 in the other faults to be ac-
tually the number 31

d P1 commilsston Interface slnce the program pads an empty Input
buffer with the character "z,” It lgnores

a valld input llne that has a "z"” as a
first character

e P1 omlission control  successlve break characters are not con-
densed In the output

r P1 commlsslon cosmetlc spelllng mlistake In the error message
“x*xx word to long x*x”

g P1 commlission computationafter detectilng a word In the Input

longer than 30 characters, the message
"xxx word to long xxx" Is printed once
for every character over 30, and the pro-
cessing of the text does not termlnate

h P1 omlsslon Interface after detecting a word in the Input
longer than 30 characters, the program
prints whatever Is residing In Its ocutput
buffer

1 P1 commission control after detecting an lnput line without an
end-of-text character, the program er-
roneously lIncrements its buffer polnter
and replaces the flrst character of the
next Input llne with a "z"

J P3 commisslon Interface routine FIRST returns zero (0) when the
l1st has one element
k P3 commIission Interface routine ISEMPTY returns true (1) when

the l1st has one element

| P3 commlsslon Interface routlne DELETEFIRST can not delete
the first llst element when the ilst has
only one element

m P3 commlsston lnterface routlne LISTLENGTH returns one less
than than the actual length of the llst

]
]‘
@
o
>
N

-
[%1]
2 . DO

- - S ‘h' ..- N V-- ~~. . - ) - - .
T T L N R S Y o
AP SIS IR AR Y. T VAT, A PL PV, U VL P . 1

P . . S . R IPIE IR S
3




P3

commIission Interface routlne ADDFIRST can add more than
the speclified flve elements to the list

P3

commisslon Interface routlne ADDLAST can add more than
the speclfled flve elements to the list

P3

omlssion computationroutine REVERSE does not reverse the
list properly when the llst has more than
one element

P4

commIisslon computatlonwords greater than or equal to three
characters (not strictly greater than) are
treated as cross reference keywords

P4

commlsslon Interface slnce the program uses the key "ZZZ" as
an end-of-input sentlnel, it does not pro-
cess a valld record with key "ZZZ™ and
lgnores any following records

P4

commlssion control update actlon add wlth the error condl-
tlon "key already !in the master flle” re-
places the exlisting record; the update
record 1s not ignored

P4

commuission control update action replace with the error con-
ditlon "key not found In the master flle”
adds the record; the update record Is not
lgnored

P4

omlssion data the number of references and number of
words In the dlctlonary are not checked
for overflow

P4

omlssion computationtwo or more.update transactlons for the
same master record glve Incorrect results

P4

commlission Interface Kkeywords longer than 12 characters are
truncated and not distingulshed

P4

comml/ission control an update record with column 80 nelther
an add actlon A" nor replace actlon
"R” acts llke an add transaction

P4

cominlssion Interface Keyword Indices appear In reverse alpha-
betlcal order

P4

omlssion interface no check Is made for unlque keys in the
master flle

P4

commission Interface punctuation Is made a part of the Key-
word

P4

omlssion data words appearlng twlce In a title gcet two
cross reference entrles

commlssion computationthe x and ¥ aXes are mislabeled

PP IS SRR

46




Pl TN AL A AR A el At Hhalie And - 4o Sk Aol Al And Sop Bog A

D P2 omisslon computationpolnts with negatlve y-values are not
processed and do not appear on the

graph -
E P2 commisslon control the origin (0,0) appears on the graph re- }::

gardless of whether It Is an Input polnt :{
F P2 commIission data no polnts can appear on the vertlcal axls ,’,::
G P2 commIission computationthe vertical and horizontal scaling for N

the pixels are calculated Incorrectly, 1
causing some polnts not to appear in the :
proper pixel

H P2 omisslon computationwhen more than one polnt would appear ';
In a given plxel, only an asterisk (*) ap-
pears, not an approprlate Integer

4.1.2.3. Experimental Design

The experlmental design applled for each of the three phases of the study
was a fractional factorial design {Cochran & Cox 50, Box, Hunter, & Hunter 78].
Thls experimental deslgn dlstingulshes among the testing techniques, while al-
lowlng for varlation In the abllity of the particular individual testing or In the
program belng tested. Flgure 11 dlsplays the fractional factorlal deslgn ap-
propriate for the third phase of the study. Sublect S, 1s In the advanced exper-
tise level, and he structurally tested program PI, functionally tested program
P, and code read program P4. Notlce that all of the subjects tested each of
the three programs and used each of the three technlques. Of course, no one
tests a glven program more than once. The deslgn appropriate for the third
phase Is dlscussed In the following paragraphs, with the minor differences
between thls deslgn and the ones applied In the first two phases belng discussed \

at the end of the sectlon. e

N L .

- r N - ~-‘.'-'-.\“-'.~.s

e e e e e T e e
I\ R WAV VR PP LRI AP S S SR .




P it b Bk A S St Sy S 20 AN Seti B T g A bR S0

N
Figure 11. Fractlonal Factorlal Deslgn. -4
Code Functlonal | Structural C:'

Reading Testing Testing '

P1P3P4 P,PsP, | P,PygP, :

S, —X —X— X—o o=

Advanced S, —X— X— —X K
Subjects . e al
Sg | X— —X —X—

Sg | —X— X—o —X

Inter- S| —X —X— X— _»
medlate . NN 5
Subjects . e )
Sig | X— —X —X— :;;

S, | —X— X—o —X o

Junlor S 54 X— —X —X— .
Sublects : X

S | —X —X— X—
4.1.2.3.1. Independent and Dependent Variables o

The experimental design has the three Independent varlables of testing :‘:,'.
technlque, software type, and level of expertlse. For the deslgn appearing In f':j
Flgure 11, approprlate for the third phase of the study, the three maln effects
have the followlng levels: s
1) testing technique: code readlng, functlonal testing, and structural testing
2) software type: (P ;) text processing, (Pg) numerlc abstract data type, and

(P ;) database malntalner ' .
3) level of expertise: advanced, intermedlate, and junlor

Every comblnation of these levels occurs In the design. That Is, programmers In

48




Chins 0 el o
e e e

all three levels of expertise applled all three testing technlques on all programs.
In additlon to these three maln effects, a factorlal analysis of varlance (ANOVA)
model supports the analysls of Interactlons among each of these maln effects.
Thus, the Interactlon effects of testlng technique * software type, testing tech-
nlq * expertlse level, software type * expertise level, and the three-way In-
teraction of testing technlque * software type * expertise level are Included In
the model. There are several dependent variables examlned In the study, in-
cluding number of faults detected, percentage 6!‘ faults detected, total fault
detectlon time, and fault detectlon rate. Observatlons from the on-llne methods
of functlonal and structural testing also had as dependent varlables number of
computer runs, amount of cpu-tlme consumed, maxlmum statement coverage
achleved, connect time used, number of faults that were observable from the
test data, percentage of faults that were observable from the test data, and per-
centage of faults observable In the from the test datva that were actually ob-

served by the tester.

4.1.2.3.2. Analysis of Variance Model

The three maln effects and all the two-way and three-way Interactlons
effects are called filxed effects In thls factorlal analysls of varlance model. The
levels of these effects glven above represent all levels of Interest In the Investiga-
tton. For example, the effect of testing technlque has as partlcular levels code
reading. functional testing, and structural testlng; these particular tesring tech-

nlques are the only ones under comparison In thls study. The effect of the par-

49

-y~

e 2 e )

RIS I
4 L b ter




o »

ORI

-

ticular subjects that participated In thls study requires a little different Interpre-
tatlon. The subjects examlned In the study were random samples of program-
mers from the large population of programmers at each of the levels of exper-
tise. Thus, the effect of the subjJects on the varlous dependent varlables Is a
random varlable, and thls effect therefore Is called a random effect. If the sam-
ples examlined are truly representative of the population of subjects at each ex-
pertise level, the Inferences from the analysis can then be generallzed across the
whole popuilation of subjects at each expertise level, not Just across the particu-
lar subjects In the sample chosen. Slnce this analysls of variance model contalns
both fixed and random eflects, 1t Is called a mixed model. The actual ANOVA

model for the design appearing In Fligure 11 Is given below.

Tx'j/:l'= L© + Qg + ﬂj + Y+ 5:&'! + aigij + Yk + IBA/]'/: + a.BAfij/c +

€ Tk

where

‘I‘,‘jk, 1s the observed response from subject 1 of experlence level k uslng
testing technlque 1 on program }J

4 1s the overall mean response

o; 1s the maln effect of testing technique ! (1 == 1,2.3)

[3]- s the maln effect of program ) (J = 1, 3, 4)

~¢ 1s the maln effect of expertise level k (k = 1, 2. 3)

04 1s the random effect of subject | withln expertlse level k, a random
varlable 1 =1, 2, ..., 32; k =1, 2, 3)

aB,-J- 1s the Interaction effect of testing technlque | with program ) (1 = 1,
2,3;1]=1,3,4)

av; 1s the Interaction effect of testing technlque ! wlth expertlse level k
1=1,23k=1,2,3)

3’7]‘/: s the Interaction effect of program J with expertise level k (J = 1.
3, 4: k=1, 2, 3)

a‘i*;“‘,rk 1s the Interaction effect of testing technique ! with program J with

50

B e e
LT e e




T

Y
»

experlence level k 1=1,2,3;1]=1,3,4k=1,2, 3)
€4 1s the experimental error for each observation, a random variable

The F tests of hypotheses on all the fixed eflects mentloned above use the
error (restidual) mean square In the denomlnator, except for the test of the ex-
pertise level effect. The expected mean square for the expertise level effect con-
talns a component for the actual variance of subjects withln expertlse level. In
order to select the appropriate error term for the denominator of the expertlse
level F test, the mean square for the effect of sublects nested within expertise
level s chosen. The parameters for the random effect of subjects withln exper-
tise level are assumed to be drawn from a normally distributed random process

with mean zero and common varlance. The experimental error terms are as-

sumed to have mean zero and common variance.

The fractional factorial deslgn applled In the first two phases of the

analysls differed slightly from the one presented above for the third phase.® In
the third phase of the study, programs P, Pg and P4 were tested by sublects
In three levels of expertlse. In both phases one and two, there were only sub-
Jects from the levels of Intermediate and Junlor expertise. In phase one, pro-
grams P, P and P, were tested. In phase two, the programs tested were P
P, and P, The only modlficatlons necessary to the above explanation for

phases one and two are 1)} ellmlnatlng the advanced expertlse level, 2) changing

3 Although the data from all the phases can be analyzed together. the
number of empty cells resultlng from not having all three experlence levels and
all four programs in all phases llmits the number of parameters that can be es-
timated and causes non-unlque Type IV partial sums of squares.

51

Pl Bt e Ao ah Ain @ dh i i A Bd 0 Bl B dad e d e ke s

PR AL
SRR

&

. s e s .
R A RNRN

AL AP
i AN

]

[ N R




the program P subscripts appropriately, and 3) leaving out the three way ln-

1 NRAARIYI)

teraction term 1n phase two, because of the reduced number of subjects. In all

three of the phases, all sublJects used each of the three technliques and tested

- -
s

LSS

each of the three programs for that phase. Also, within all three phases, all pos-

o

slble comblnations of expertise level, testing technlques, and programs occurred.

v
P

The order of presentatlon of the testing techniques was randomized among

~rv
7,

o 1

the sublects In each level of expertise In each phase of the study. However, the
Integrity of the results would have suffered If each of the programs in a given
phase was tested at dlfferent times by different sublects. Note that each of the
testlng sesslons took place on a different day because of the amount of effort re-
qulred. If different programs would have been tested on different days, any dis- 2z
cussion about the programs among subjects between testing sesslons would have
affected the future performance of others. Therefore, all subjects In a phase
tested the same program on the same day. The actual order of program presen- Z:

tatlon was the order 1n which the programs are listed 1n the previous paragraph.

4.1.2.4. Experimental Operation

Each of the three phases were broken Into flve distinct pleces: tralning, .
three testing sesslons, and a follow-up sesslon. All groups of subjects were ex-
posed to a simllar amount of tralnlng on the testlng technlques before the study o
bezan. As mentloned earller, the Unlversity of Maryland subjects were enrolled
In the "Software Deslgn and Developmeni” course. and the NASA/CSC sub- j:':

Jects were glven a four-hour tutorial. Background information on the subjects

T NP I WAL P T ) PSR e DRI Y ia - Lca VT TN W PV W N T vy




was captured through a questlonnalre. Elementary exerclses followed by a
pretest covering all technlques were adminlstered to all subjects after the traln-
Ing and before the testing sessions. Reasonable effort on the part of the Unlver-
sity of Maryland subjlects was enforced by thelr belng graded on the work and
by thelr needlng to use the technlques In a majlor class project. Reasonable
effort on the part of the NASA/CSC subjects was certaln because of thelr deslre
for the study’s outcome to lmprove thelr software testlng environment. All sub-
Jects groups were judged highly motivated durlng the study. The sublects were
all famillar with the editors, terminals, machlnes, and the programs’ Implemen-

tation language.

The Indlviduals were requested to use the three testing technlques to the
best of thelr ability. Every subject particlpated In all three testlng sesslons of
hls/her phase, using ail technlques but each on a separate program. The lndlvl-
duals uslng code reading were each gliven the specification for the program and
1ts source code. They were then asked to apply the methods of code reading by
stepwlise abstractlon to detect dlscrepancles between the program's abstracted
function and the speclificatlon. The functlonal tester: were each glven a
speclfication and the ablilty to execute the program. They were asked to per-
form equlvalence partitionlng and boundary value analysls to select a set of test
data for the program. Then they executed the program on thls ccllectlon of
test data. and Inconsistencles between what the program actually performed
and what they though the speclfication sald It should perform were ncted. The

structural testers were given the source code for the program. the abllity to exe-

I
AT AN W ]



‘i -
o '

.‘r‘l

cute It, and a description of the lnput format for the program. The structural

.

o testers were asked to examline the source and generate a set of test cases that

cumulatively execute 1009 of the program's statements. When the subjects

e b
r v
s

oy
g

were apnlying an on-llne technlque, they generated and executed thelr own test

. 'l .'. .l. .I

T,
| % ¢

data; no test data sets were provided. The programs were Invoked through a

R

test driver that supported the use the of multiple Input data sets. Thls test
drlver, unbeknown to the subjects, dralned off the Input cases submltted to the
program for the experimenter’'s later analysls; the programs could only be ac-

cessed through a test drlver.

A structural coverage tool calculated the actual statement coverage of the
;ﬂ: test set and which statements were left unexecuted for the structural testers. -
. After the structural testers generated a collectlon of test data that met (or al- X
most met) the 100% coverage criterla, no further executlon of the program or -

reference to the source code was allowed. They retalned the program's output

from the test cases they had generated. These testers were then provided with

the program's speclificatlon. Now that they knew what the program was Intend-
ed to do, they were asked to contrast the program's specificatlon wlth the e
behavior of the program on the test data they derlved. Thls scenarlo for the

structural testers was necessary so that “‘observed’ faults could be compared.

At the end of each of the testing sesslons, the subjects were asked to glve a
X reasonable estimate of the amount of time spent detectlng faults with a glven
; testing technlque. The Unlversity of Maryland sublects were assured that this

had nothlng to with the grading of the work. There seemed to be llttle Incen-

54

S
-
-
-

PR PP WAL R PP IR, (R % WAL WU VAL TPUT WAL WY SR W WU S )




P

. tlve for the subjects In any of the groups not to be truthful. At the completion o
N of each testing sesslon, the NASA/CSC subjects were also asked what percen-
tage of the faults In the program that they thought were uncovered. After all
three testlng sesslons !n a glven phase were completed, the subjects were re-
quested to critique and evaluate the three testlng technlques regarding thelr un-
derstandablllity, naturalness, and effectlveness. The Unlversity of Maryland sub-
Jects submitted a wrltten critique, while a two hour debrlefing forum was con-
ducted for the NASA/CSC Individuals. In addlitlon to obtalnlng the impres-
slons of the lndlvlduals, these follow-up procedures gave an understanding of "

how well the sublects were comprehendlng and applying the methods. These

[RERS RS AL )

final sesslons also afforded the particlpants an opportunity to comment on any
partlcular problems they had with the techniques or In applying them to the

given programs.

4.1.3. Data Analysis

The analysls of the data collected from the varlous phases of the exper!-

m: nt 1s presented accordlng to the goal and questlon framework dlscussed ear-

"\ ler.

4.1.3.1. Fault Detection Effectiveness

- The first goal area addresses the fault detectlon eflfectiveness of each of the
technlques., Flgure 12 presents a summary of the measures that were examlned

to pursue thls goul area. A brlef description of each measure s as follows - (x)

means only relevant for on-llne testing. a) # Faults detected - the number of -

55




a7

,,,A
[

AN

B A
‘..I'..l

.o

faults detected by a subject applyilng a glven testing technlque on a glven pro-

gram. b) % Faults detected ~ the percentage of a program's faults that a sub-
Ject detected by applylng a testing technlque to the program. c) # Faults ob-
servable (x) ~ the number of faults that were observable from the program's
behavior glven the Input data submitted. d) % Faults observable (x) - the per-
centage of a program'’s faults that were observable from the program’s behavior
given the Input data submitted. e) % Detected/observable (*) — the percentage
of faults observable from the program’s behavior on the glven Input set that
were actually observed by a sublect. f) 9% Faults felt found — a subject’s esti-
mate of thp percentage of a program's faults that he/she thought were detected
by his/her testing. g) Maxlmum statement coverage (x) — the maximum percen-

tage of a program's statements that were executed In a set of test cases.

4.1.3.1.1. Data Distributions

The actual distributlon of the number of faults observed by the subjects
appears In Flgure 13, broken down by phase. From Flgures 12 and 13, the large
varlatlon in performance among the subjects Is clearly seen. The mean number

of faults detected by the sublects Is displayed In Flgure 14, broken down by

technlque, program, expertise level, and phase.




Flgure 12.
Overall summary of detectlon effectlveness data.
Note: some data pertaln to only on-line techniques (*), and some
data were collected only In certaln phases.

Phase | #Sub). | Measure Mean SD Min. Max.
1 29 # Faults detected 3.94 1.82 0.00 7.00
1 29 % Faults detected 54.78 | 26.11 0.00 | 100.00
1 29(*) # Faults observable 5.38 1.51 3.00 8.00
1 29(*) % Faults observable 74.59 | 20.54 | 33.33 | 100.00
1 29(%) % Detected/observable 70.99 24.01 0.00 100.00
2 13 # Faults detected 3.28 1.96 0.00 7.00
2 13 % Faults detected 39.53 | 27.25 0.00 | 100.00
3 32 # Faults detected 4.27 1.86 0.00 8.00
3 32 % Faults detected 49.82 | 27.44 0.00 | 100.00
3 32 % Faults felt found 75.10 | 24.07 0.00 | 100.00
3 32(x) # Faults observable 5.81 1.52 3.00 9.00
3 32(x) | % Faults observable 62.11 | 18.36 | 25.00 | 100.00
3 32(x) % Detected/observable | 68.87 | 27.14 0.00 | 100.00
3 32(%) Max. % stmt. covered 97.02 7.83 48.00 100.00

Ave 74 # Faults detected 3.97 1.88 0.00 8.00
Ave 74 % Faults detected 49.96 | 27.29 0.00 | 100.00
Ave 81(x) # Faults observable 5.5 1.5 3.00 9.00
Ave 81(x) % Faults observable 68.0 20.3 25.0 100.0
Ave 61(*) % Detected/observable { 70.3 25.8 0.0 100.0

SRS ARG Bl d Rk TR N




. . . -’ RS . y v fang S A e s
DY P O | AR . AR PR e v

ARV | G ! SARAANYY RN | ? SORRARNA ECNENRIAN  (SAASCERON ARSI
r.
'y
)
-
»
b,
o4 173 }
o]
8 3 0| o
.. = i
> <
2 o5 SSFFccccccccc+r
o |
m mm SSSFFFFFFCCCCCC+5
o £ |
a w8 SSFFFFFCCCC+5
2 i
g SSSSFFFFFFFFFFFFFFCCCCC+4
o |
° SSSSSSSSSSFFFCCCC+3
§ = |
R
o~ SSSSSSFCC+2
5L
9 G M nE L~
LV @
-2 D
L34
8
v & n O o
° 3
© ] M
2z 5 8
nu»& o— —
&8 - 4-9 © + o
o o a
rm IR [ *v
°© ~ s | o “ % w
T, o @ 1 v ® 1
- 2% R
8 p P N EEEOVOVOO ps O 4~
33 Ayt o, o
[ = 1 o . ]
Mm NN EEEEDO 4 © R T T A
<3
R SSFFFFCCC4-5 SFFC+5
nfu
oc
mm NN N ® R bbb OO0 4 NNV EREROOO L4 -
L,
EOl vwwonnnnnmrccmmO000000000 4o b B O+ o
QP
.o NNNLNNOEREKEGODD 4+ a NN ORED 4~
o wnv L~ scccc+1
2 m.
w. i w1+ o 0O +o

E‘ﬁv' AR e e AR Aadle e nat
-
-
-
b
.




......

Flgure 14.
Overall summary for number of faults detected.
Phase
1 2 3
Effect Level Mean(SD) Mean(SD) Mean(SD)
Technlque Readlng 4.10 (1.93) | 3.00 (2.20) | 5.09 (1.92)
Functlonal | 4.45 (1.70) | 3.77 (1.83) | 4.47 (1.34)
Structural | 3.28 (1.87) | 3.08 (1.89) | 3.25 (1.80)
Program Formatter | 4.07 (1.82) [ 3.23 (2.20) | 4.19 (1.73)
Plotter 3.48 (1.45) | 3.31 (1.97) . ()
Data type | 4.28 (2.25) () 5.22 (1.75)
Database . () 3.31 (1.84) 3.41 (1.88)
Expertise Junlor 3.88 (1.88) | 3.04 (2.07) | 3.90 (1.83)
Intermed. 4.07 (1.868) | 3.83 (1.84) | 4.18 (1.99)
Advanced . () . () 5.00 (1.53)

4.1.3.1.2. Number of Faults Detected

The first question under thls goal area asks whlich of the testing techniques
detected the most faults In the programs. The overall F-test of the technlques
detecting an equal number of faults In the programs Is rejected 1n the first and
third phases of the study {(«@<.024 and < .0001, respectively; not rejected In
phase two, a>.05). Recall that the phase three data was collected from 32
NASA/CSC subjects, and the phase one data was from 29 Unlversity of Mary-
land sublects. WIith the phase three data, the contrast of ‘‘readlng — 05 =

(functlonal + structural)'’ estimates that the technlque of code readlng by step-

wlse abstraction detected 1.24 more faults per program than dld elthier of the




other technlques (o< .0001, c.l. 0.73 - 1.75).* Note that code reading performed
well even though the professlonal sublects’ primary experlence was with func-
tional testing. Also with the phase three data, the contrast of ‘‘functlonal -
structural’ estimates that the technique of functlonal testlng detected 1.11 more
faults per program than did structural testing (a<.0007, c.l. 0.52 — 1.70). In
the phase one data, the contrast of ‘0.5 * (reading + functional) — structural”
estlmates that the technlque of structural testing detected 1.00 fault less per
program than did elther reading or functlonal testlng (a<.0085, c.l. 0.31 -
1.89). In the phase one data, the contrast of ‘‘reading - funcilonal” was not
statistically different from zero (a>.05). The poor performance of structural
testing across the phases suggests the lnadequacy of using statement coverage
criterta. The above palrs of contrasts were chosen because they are llnearly in-

dependent.

4.1.3.1.3. Percentage of Faults Detected

Since the programs tested each had a different number of faults, a question
In the earller goal/question framework asks which technlque detected the
Treatest percentage of faults In the programs. The order of performance of the
technlques s the same as above when the percentage of the programs’ taults
detected are compared. The overall F-tests for phases one and three were re-

Jected as before (a<.037 and a<.0001 respectively: not relected In phase two,

* The probably of Type I error 1s reported, the probabllity of erroneously re-
Jecting the null hypothesls. The abbreviation “c.1.”" stands for 95%; confldence
Interval.

60

. A
{ Y]

e N R

- e -
L S LN




a>.05). Applylng the same contrasts as above: a) ln phase three, reading
detected 16.09% more faults per program than dld the other technlques
(x<.0001, c.l. 9.9 — 22.1), and functional detected 11.29% more faults than dld
structural (¢<.003, c.l. 4.1 — 18.3); b) In phase one, structural detected 13.29%
fewer of a program's faults than dld the other methods (< .011, c.l. 3.5 - 22.9),

and readling and functlonal were not statistically different as before.

4.1.3.1.4. Dependence on Software Type

Another questlon In thls goal area querles whether the number or percen-
tage of faults detected depends on the program belng tested. The overall F-test
that the number of faults detected 1s not program dependent 1s rejected only In
the phase three data (a<<.0001). Applying Tukey's multiple comparison on the
phase three data reveals that the most faults were detected In the abstract data
type, the second most In the text formatter, and the least number of faults were
found In the database malntalner (slmultaneous a<.05). When the percentage
of faults found !n a program Is consldered, however, the overall F-tests for the
three phases are all rejected (@< 027, < .01, and a<.0001 In respecﬁlve ord-
er). Tukey's multlple comparison ylelds the followlng orderings on the pro-
grams (all slmultaneous a<.05). In the phase one data, the ordering was (data
type =< plotter}) > text formatter; that is, a hlgher percentage of faults were
detected In elther the abstract data type or the plotter than were found in the
text formatter; there was no difference between the abstract data type and the

plotter in the percentage found. In the phase two data, the orderlng of percen-

61

o T et
- PN I IR .

. e

L

T L
0 ..l"

L)
ol e

-
0
e alete

..,‘...

9]

PRI




E .’.‘.,
i N0 Yol Tl g% Y.

tage of faults detected was plotter > (text formatter =~ database malntalner).

In the phase three data, the orderlng of percentage of faults found In the pro-
grams was the same as the number of faults found, abstract data type > text
formatter > database malntalner. Summarizing the effect of the type of soft-
ware on the percentage of faults observed: 1) the programs with the highest per-
centage of thelr faults detected were the abstract data type and the mathematl-
cal plotter, the percentage detected between these two was not statlistlcally
different; 2) the programs with the lowest percentage of thelr faults detected
were the text formatter and the database malntalner; the percentage detected
between these two was not statlstically different 1n the phase two data, but a
higher percentage of faults In the text formatter was detected In the phase three

data.

4.1.3.1.5. Observable vs. Observed Faults

One evaluation criterla of the success of a software testlng sesslon Is the
number of faults detected. An evaluatlon criterla of the particular test data
generated, however, Is the abllity of the test data to reveal faults In the pro-
gram. A test data set’s ablllty to uncover faults In a program can be measured
by the number or percentage of a program's faults that are made observable
from executlon on that Input. Distingulshing the faults observable in a program
from the faults actually observed by a tester highlights the differences In the ac-
tivitles of test data generation and program behavior examlnation. As shown In

Flgure 11, the average number of the programs’ faults observable was 83.0¢¢

.
~ R T R T I T -t '.*.-"‘n'-_-'A'.
FRP BT W IAE T L U VAP T B TR T 0 O.F VPN T T Y




" )
':
P‘
!
~
L

when Indlviduals were elther functlonal testing or structurally testing. Of
course, with a nonexecutlon-based technique such as code reading, 1009 of the
faults are observable. Test data generated by sublects using the technlque of
functlonal testlng resulted ln 1.4 more observable faults (x<.0002, c.i. 0.79 -
2.01) than did the use of structural testlng In phase one of the study; the per-
centage difference of functlonal over structural was estlmated at 20.0%
(x<.0002, cJd. 11.2 - 28.8). The technlques did not differ In these two measures
in the third phase of the study. However, Just consldering the faults that were
observable from the submitted test data, functlonal testers detected 18.5% more
of these observable faults than dld structural testers In the phase three data
(< .0018, c.l. 8.9 — 28.1); they did not differ In the phase one data. Note that
all faults In the programs could be observed in the programs’ output glven the
proper lnput data. When using the on-line technlques of functlonal and struc-
tural testing, sublects detected 70.3% of the faults observable In the program's
output. In order to conduct a successful testlng sesslon, faults ln a program

must be both revealed and subsequently observed.

4.1.3.1.8. Dependence on Program Coverage

Another measure of the abllity of a test set to reveal a program's faults s
the percentage of a program's statements that are executed by the test set. The
average maximum statement coverage achleved by the functional and structural
testers was 97.09%. The maxlmum statement coverage from the submltted test

data was not statlstically d!fferent between the functional and structural testers

L PTIR PRV VS Sy

»

k]

PR
e . .

‘

A

N
[




208

£

:;: (a>.05). Also, there was no correlation between maximum statement coverage ¢
' achleved and elther number or percentage of faults found (a>.0S). .
- 4.1.3.1.7. Dependence on Programmer Expertise

A flnal question In thls goal area concerns the contrlbutlon of programmer
expertise to fault detectlon eflectlveness. In the phase three data from the
NASA/CSC professional environment, subjects of advanced expertlse detected
more faults than did elther the subjlects of intermedlate or Junlor expertise 7
(a<.05). When the percentage of faults detected ls compared, however, the ad-
vanced subjects performed better than the Junior subjects (a<.05), but were
not statistically different from the Intermedlate subjects (a>.05). The lnter-

mediate and Junlor subjects were not statistically different In any of the three

phases of the study in terms of number or percentage faults observed. When

_;I several subject background attributes were correlated with the number of faults

LT AL

found, total years of professional experlence had a minor relationship (Pearson
R = .22, @<.05). Correspondence of performance with background aspects was
examl!ned across all observatlons, and wlthln each of the phases, Including prevl- ~
ous academic performance for the Unlversity of Maryland subjects. Other than

the above, no relatlonshlps were found.

4.1.3.1.8. Accuracy of Self-Estimates

Recall that the NASA/CSC sublects In the phase three data estlmated. at
the completlon of a testlng sesslon, the percentage of a program’'s faults they 2

thought they had uncovered. Thls estlmatlon of the number of faults un-

64




M T aW e a W, N T NN WLV e Y W .

covered correlated reasonably well with the actual percentage of faults detected
(R = .57, a«<.0001). Investigating further, Indlviduals using the different tech-
niques were able to give better estimates: code readers gave the best estlmates
(R = .79, a<.0001), structural testers gave the second best estimates (R = .57,
a<.0007), and functlonal testers gave the worst estlmates (no correlation,
a>.05). This last observatlon suggests that the code readers were more certain

of the effectlveness they had 1n reveallng faults in the programs.

4.1.3.1.9. Dependence on Interactions

There were few signlficant Interactlons between the maln effects of testing
technlque, program, and expertlse level. In the phase two data, there was an In-
teractlon between testing technique and program In both the number and per-
centage of faults found (@< .0013, @<<.0014 respectively). The effectlveness of
code readlng Increased on the text formatter. In the phase three data, there
was a slight three-way Interaction between testing technlque, program, and ex-
pertise level for both the number and percentage of faults found (a<<.05, a<< 04

respectlvely).

4.1.3.1.10. Summary of Fault Detection Effectiveness

Summarlzing the major results of the comparison of fault detection
effectlveness: 1) In the phase three data, code reading detected a greater number
and percentage of faults than the other methods, with functional detecting more
than structural: 2) in the phase one data., code readlng and functional were

equally effective, whlle structural was Infertor to both - there were no dliferences

635




among the three techniques In phase two; 3) the number of faults observed

depends on the type of software: the most faults were detected In the abstract
data type and the mathematical plotter, the second most In the text formatter,
and (In the case of the phase three data) the least were found In the database
malntalner; 4) functionally generated test data revealed more observable faults
than did structurally generated test data In phase one, but not In phase three;
5) subjects of Intermediate and junlor expertise were equally effectlve In detect-
Ing faults, whlle advanced subjects found a greater number of faults than did el-
ther group; and 6) self-estlmates of faults detected were most accurate from
sub,ects applylng code reading, followed by those dolng structural testing, with

estimates from persons functlonally testing having no relatlonship.

4.1.3.2. Fault Detection Cost

The second goal area examlnes the fault detectlon cost of each of the tech-
nlques. Flgure 15 presents a summary of the measures that were examlned to
Investigate thls goal area. A brlef description of each measure 1s as follows — (*)
means only relevant for on-line testlng. a) # Faults / hour - the number of
faults detected by a subject applylng a glven technlque normallized by the effort
In hours requlred, called the fault detectlon rate. b) Detectlon tlme — the total
number of hours that a subject spent in testing a program using a technlque. c)
Cpu-tlme (*) - the cpu-tlme In seconds used durlng the testing sesslon. d) Nor-

mallzed cpu-tlme (+) — the cpu-time In seconds used durlng the testlng session.

66

-..'L.A'A‘;'(A;;‘-’.‘.‘-'."“-.:""_.":_", e et it e sl dnfiosendiiindir cudotonde ol




normalized by a factor for machine speed.® ¢) Connect time (x) — the number of
minutes that a lndlvidual spent on-llne while testing a program. f) # Program
runs (*) — the number of executions of the program test driver; note that the
driver supported multiple sets of lnput data. All of the on-llne statlstics were

monlitored by the operating systems of the machlnes.

4.1.3.2.1. Data Distributions

The actual distributlon of the fault detectlon rates for the subjects appears
In Flgure 16, broken down by phase. Once agaln, note the many-to-one
differential in subject performance. Flgure 17 displays the mean fault detection
rate for the sublects, broken down by technlique, program, expertise level, and

phase.

> In the phase three data, testing was done on both a VAN 11,/730 and an
IBM 4341, As suggested by benchmark comparisons [Church S4'. the VAN
cpu-tlmes were divided by 1.8 and the IBMNM cpu-times were Jdlvided by 0.0,




v Figure 15.
N Overall summary of fault detectlon cost data.
Note: some data pertaln to only on-llne technlques (x), and some
data were collected onlv In certaln phases.
Phase #Sub). Measure Mean SD Min. Max.
1 29 # Faults / hour 1.63 1.28 | 0.00 7.00
1 29 Detectlon time (hrs) 333 | 2.09 | 075 | 10.00
2 13 # Faults / hour 0.99 0.81 | 0.00 3.00
2 13 Detectlon time {(hrs) 4.70 3.02 1.00 14.00
3 32 # Faults / hour 2.33 2.28 0.00 14.00
3 32 Detectlon time (hrs) 2.75 1.57 0.50 7.25
3 32(x) Cpu-time (sec) 45.2 56.1 3.0 283.0
3 32(%) Cpu-time (sec; norm.) | 38.5 51.7 2.9 314.4
3 32(*) Connect time (min) 65.83 | 50.21 | 3.50 | 214.00
3 32(%) # program runs 5.45 5.00 1.00 24.00
Ave 74 # Faults / hour 1.82 1.80 | 0.00 14.00
Ave 74 Detectlon time (hrs) 3.32 2.19 0.50 14.00




R e e e e e e e e e B e A g e e e s, o S —
- . - . . LT e - " . N . . B - - - - L - - - - - - LN -t . -

N
5 Figure 16. Distribution of the fault detection rate (#faults detected per hour) broken down
by phase. Key: code readers (C). functional testers (F), and structural testers (S).
" s
S
) S Phase 1: Phase 3:
1 SS 87 observations 96 observations
Ss S
SS S
SS SS
sSS SS
SS SF
FSS SF
FFS SFS
FFS SFS
FFSS FFS S
FFSS FFS S
FFFS SFFF S
CFFF SFCF F
CFFF SFCF F S
CCFF S SSFCFSF S
FCCCF F SFCCCSFS S
. CCCCF F S FFOCCFFF S
y COCCCCFSSF SCFCCCFCC S C
SCCCCCCFFCC OCC C COCCCCCFCOCF CFC € € CC C
e e R e e S S e e S
0 5 10 15 0 5 10 15
S Phase 2
- F 39 observations
y F
! SF
SF S
FF S
p cC s
cC s
5 SOCSFF
FCCSCFS S
N QOCSCFF F
.. R e s Rttt PR SR S
Q 5 10 15

69 ¥




LN

PO 1" e R ".

P DA
PERTIRFIR

IR

......

Flgure 17.
Overall summary for fault detectlon rate (# faults
| detected per hour).
[ Phase
1 2 3
EEffect }r Level Mean(SD Mean(SD) Mean(SD)
Technlque Reading 1.90 (1.83) | 0.56 (0.48) | 3.33 (3.42)
Functlonal | 1.58 (0.80) | 1.22 (0.91) | 1.84 (1.08)
_Structural 1.40 (0.87) | 1.18 (0.84) | 1.82 (1.24)
Program Formatter 1.60 (1.39) | 0.98 (0.87) | 2.15 (1.10)
Plotter 1.19 (0.83) | 0.92 (0.71) . ()
Data type | 2.09 (1.42) . () 3.70 (3.26)
Database . () 1.05 (1.04) | 1.14 (0.79)
Expertlse Junlor 1.36 (0.97) | 1.00 (0.85) | 2.14 (2.48)
Intermed. | 2.22 (1.88) | 0.98 (0.74) | 2.53 (2.48)
Advanced () () 2.36 (1.61)

4.1.3.2.2. Fault Detection Ra*e and Total Time

The first question In this goal area asks whlch testing technique had the
highest fault detectlon rate. The overall F-test of the technlques’ having the
same fault detectlon rate was rejected In the phase three data (a<.0014), but
not in the other two phases («>.05). As before, the two contrasts of '‘readlng -
0.5 * (functlonal + structural)” and “‘functional - structural’® were examined to
detect dlfferences among the technlques. The technlque of code readlng was es-
timated at detectlng 1.49 more faults per hour than dld the other technlques In
the phase three data (a<.0003, c.l. 0.75 - 2.23). The technlques of functlonal
and structural testing were not statlstically different (a>.05).

Comparlng the

total tlme spent In fault detectlon, the techniques were not statistically different




o~

“w

P

el et ay e w Ye e T LT T e T T e L - )
RV N T TN Dol T S T ARG T N T U S W P VAN e P atndnbiat L

In the phase two and three data; the overall F-test for the phase one data was
reJected (@< .013). In the phase one data, structural testers spent an estimated
1.08 hours less testing than did the other technlques (x<<.004, c.l. 0.39 - 1.78),
whlle code readers were not statlstically different from functlonal testers. Recall
that In phase one, the structural testers observed both a lower number and per-

centage of the programs’ faults than dld the other techniques.

4.1.3.2.3. Dependence on Software Type

Another question In thls area focuses on how fault detection rate depends
on software type. The overall F-test that the detectlon rate i1s the same for the
programs 1s rejected in the phase one and phase three data {(a<.01 and
a<<.0001 respectlvely); the detectlon rate among the programs was not statlistl-
cally different in phase two. Applylng Tukey's multiple comparisons on the
phase one data finds that the fault detectlon rate was greater on the abstract
data type than on the plotter, whlle there was no dlfference elther between the
abstract data type and the text formatter or between the text formatter and the
plotter (slmultaneous a<.05). In the phase three data, the fault detectlon rate
was hlgher In the abstract data type than It was for the text formatter aand the
database malntalner, with the text formatter and the database malntalnar not
belng statlstically different (slmultaneous a<.05). The overall effort spent In
fault detectlon was different among the programs In phases one and three
(< .012 and a<.0001 respectively), while there was no dlifference 'n phase two.

In phase one. more effort was spent testing the plotter than the abstract data

Mttt tuletbnden ik

‘-
v et
»

;

e

't




Lo al o e i B gace S ieaa it ek Jaun at Aot et SR gt At St Mt AR Aus adhd S Aedh aned Sih e s Bl Sin i e Ab b e a4 S Ran A S Sl b o SRR PR R COEE T

type, while there was no statistical dlfference elther between the plotter and the

text formatter or between the text formatter and the abstract data type (slmul-

taneous a<<.05). In phase three, more tlme was spent testing the database
malntalner than was spent on elther the text formatter or on the abstract data

type, with the text formatter not differing from the abstract data type (slmul-

taneous «<.05). Summarizing the dependence of fault detectlon cost on soft-

ware type, 1) the abstract data type had a higher detectlon rate and less total
detection effort than did elther the plotter or the database malntalner, the latter
two were not different In elther detectlon rate or total detectlon time; 2) the
text formatter and the plotter dld not differ in fault detectlon rate or total
detectlon effort; 3) the text formatter and the database malntalner did not differ
in fault detectlon rate overall and did not differ In total detectlon effort ln phase
two, but the database malntalner had a hlgher total detectlon effort In phase
three; 4) the text formatter and the abstract data type did not differ In total
detection effort overall and did not dlffer‘ In fault detectlon rate 'n phase one,

but the abstract data type had a hlgher detectlon rate 'n phase three.

4.1.3.2.4. Computer Costs

In addltlon to the effort spent by Indlviduals In software testlng, on-iine
methods Incur machine costs. The machlne cost messures of cpu-time, connect
time, and the number of runs were compared across the on-line techniques of
functlonal and structural testlng In phase three of the study. A nonexecutlon-

based technlque such as code readlng, of course, Incurs no machlne tlime costs,

~1
t9

. e T T T T e e T T T T T e e e e e L e T e e e e S W e L e e,
WPV FEPEVEROPE FCPR P LV PTG PN PR CT PR PRV FT VR TS TS WK SV o0 W v DoV W v S P,



“ s s 8 o m s

CCONRCNCN

When the machine speeds are normalized (see measure definitlons above), the
technique of functional testing used 26.0 more seconds of cpu-time than did the
technique of structural testlng (a<.018, c.l. 7.0 — 45.0). The estimate of the
difference 1s 29.6 seconds when the cpu-times are not normalized (x<<.012, c.l.
9.0 - 50.2). Individuals using functlonal testing used 28.4 more minutes of con-
nect time than dld those using structural testlng (a@<.004, c.l. 11.7 — 45.1). The
number of computer runs of a program’s test driver was not different between
the two technlques (a>.05). These results suggest that indlviduals using func-
tlonal testing spent more tlme on-llne and used more cpu-tlme per computer run

than did those structurally testing.

4.1.3.2.5. Dependence on Programmer Expertise

The relatlon of programmer expertlse to cost of fault detectlon 1s another
question 1n thls goal sectlon. The expertise level of the subjects had no relation
to the fault detectlon rate In phases two and three (a>.05 for both F-tests).
Recall that phase three of the study used 32 professional subjects with all three
levels of computer sclencé expertise. In phase one, however, the Intermedlate
subjects detected faults at a faster rate than dld the junlor subjects (a<.005).
The total effort spent In fault detection was not dlfferent among the expertlse
levels In any of the phases (a>.05 for all three F-tests). When all 74 subjects
are consldered, years of professlonal experlence correlates positively with fault
detection rate (R = .41, a<.0002) and correlates slightly negatlvely wlith total

detectlon time (R = -.25, < .03). These last two observatlons suggest that

73

vt
. .
» v Nu

e

L A

SEAELL L SESS

P




persons with more years of professional experience detected the faults faster and
spent less total tlme dolng so. Several other subject background measures
showed no relatlonshlp wlth fault detectlon rate or total detectlon tlme
(x<.05). Background measures were examined across all subjects and within

the groups of NASA/CSC sublects and Unlversity of Maryland subjects.

4.1.3.2.8. Dependence on Inceractions

There were few slgnificant Interactions between the maln effects of testing
technlque, program, and expertise level. There was an Interaction between test-
Ing technlque and software type In terms of fault detectlon rate and total detec-
tlon cost for the phase three data (a<.003 and &< .007 respectively). Subjects

using code readlng on the abstract data type had an !ncreased fault detection

rate and a decreased total detection time.

4.1.3.2.7. Relationships Between Fault Detection Effectiveness and

Cost :

There were several correlations between fault detectlon cost measures and
perforriance measures. Fault detectlon rate correlated overall with number of
faults detected (R == .48, @<.0001), percentage of faults found (R = .48,
a<.0001), and tctal detectlon time (R == -.53, a<.0001), but not with normal-
1zed cpu-time, raw cpu-tlme, connect time, or number of computer runs
(> .05). Total detectlon time correlated with normallzed cpu-time (R = .38,
a<.04) and raw cpu-tlme (R = .37, a<.04), but not w!th connect time.

nuinber of runs, number of faults detected, or percentage of faults detected.

74

PP S S . N S L . REJAR , cm T et T,
a2 alaTn’a A aal v atalaolalalacdied oo St tadededad obad sibdet idhidet s




The number of faults detected In the programs correlated with the amount of

LR A A
L S Po I

»

machlne resources used: normallzed cpu-time (R = .47, «<.007), raw cpu-time

FEP S
T2 "5 aTe ™

(R = .52, ®<.002), and connect time (R = .49, @<.003), but not with the

X “x "y

number of computer runs (o>.05). The correlations for percentage of faults

detected with machline resources used were similar. Although most of these

correlatlons are minor, they suggest that 1) the higher the fault detectlon rate,

Iy ." AN

the more faults found and the less time spent In fault detectlon; 2) fault detec-
4 tlon rate had no relatlonshlp with use of machlne resources; 3) spending more
time 1n detecting faults had no relatlonshlp with the amount of faults detected; .4

and 4) the more cpu-time and connect time used, the more faults found.

4.1.3.2.8. Summary of Fault Detection Cost .

Summarizing the majlor results of the comparlson of fault detection cost: 1)
in the. phase three data, code reading had a higher fault detection rate than the
other methods, with no difference between functional testing and structural test-
Ing; 2) In the phase one and two data, the three technlques were not different in
fault detectlon rate; 3) ln the pha.'se two and three data, total detectlon effort
was not different among the techniques, but in phase one less effort was spent
for structural testing than for the other technlques, while readlng and functional
X were not different; 4) fault detectlon rate and total effort In detectlon depended
- on the type of software: the abstract data type had the hlghest detection rate

" and lowest total detectlon effort, the plotter and the database malntalner had "

the lowest detectlon rate and the highest total detectlon etfort, and the text for-

Ld
4

[<]]

RPN AP R T R PR P AL R ST Pl e




matter was somewhere In between depending on the phase; 5) functlonal testing

N used more cpu-tlme and connect time than did structural testlng, but they were

not different 1n the number of runs; 8) ln phases two and three, subjlects across

.
»
A BLRAARA

= expertise levels were not different 1n fault detectlon rate or total detectlon tlme,
in phase one Intermedlate subjects had a higher detectlon rate; and 7) there was
a moderate correlation between fault detection rate and years of professional ex-

perience across all subjects.

4.1.3.3. Characterization of Faults Detected

',i The third goal area focuses on determinlng what classes of faults are
detected by the dlfferent technlques. In the earller sectlon on the faults in the
software, the faults were characterized by two different classlficatlon schemes:
omission or commisslon, and Initialization, control, data, computation, Interface, ,
or cosmetic. The faults detected across all three study phases are broken down
by the two fault classificatlon schemes !n Figure 18. Tte entrles In the figure
are the average percentage (with standard devlatlons) of faults In a glven class
observed when a particular technlque was belng used. Note that when a subject
tested a program that had no faults in a glven class, he/she was excluded from

the calculation of this average.

LRERES
2.

N

-
»

L)
- g

'-‘1"‘!"" .l "

-9

B SRR F T P
PR PP I U U P TP T WG T Vs Py R PP PR




Coali Sl s Raiit S St Shadh B U Saath S Juui Zan o
AN A AN AN S St o -

At it gt Ao iat far S

| Flgure 18. Characterlzatlon of the faults detected.
- Code Functlonal Structural Overall
Readlng Testing Testing

Omlsslon 55.6 (40.1) | 61.0 (39.5) | 39.2 (41.8) | 52.0 (41.3)
Commlsslon | 54.3 (32.1) | 53.5 (25.4) | 44.3 (28.8) | 50.7 (28.4)
Total 54.1 (29.2) | 54.6 (24.5) | 41.2 (28.1) | 50.0 {27.3)
Initial. 64.6 (40.3) | 75.0 (36.1) | 46.2 (39.8) | 81.5 (40.2)
Control 42.8 (36.6) | 66.7 (34.9) | 48.8 (36.5) | 52.8 (37.2)
Data, 20.7 (36.6) | 28.3 (44.9) | 26.8 (41.9) | 25.3 (41.0)
Computat. 70.9 (37.0) | 84.2 (40.8) | 58.8 (43.5) | 64.8 (40.8)
Interface 46.7 (38.5) | 30.7 (33.5) | 24.6 (29.4) { 34.1 (35.1)
Cosmetlc 16.7 (38.1) 8.3 (28.2) 7.7 (27.2) | 10.8 (31.3)
Total 54.1 (29.2) | 54.8 (24.5) | 41.2 (26.1) { 50.0 (27.3)

4.1.3.3.1. Omission vs. Commission Classification

When the faults are partitloned according to the omlsslon/commIisslon
scheme, there Is a distinctlon among the technlques. Both code readers and
functional testers observed more omlssion faults than dld structural testers
(x<<.001), with code readers and functlonal testers not belng different (a> 05).
Since a fault of omlisslon occurs as a result of some segment of code belng left
out, you would not expect structurally generated test data to find such faults,
In fact, 449 of the subjects applylng structural testing found zero faults of om-

Isslon when testing a program.

4.1.3.3.2. Six-Part Fault Classification

MWhen the faults are dlvided according to the second Tault classlfication

scheme, several differences are apparent. Both code reading and functional test-

ing found more inltlallzation faults than did structural testing {(a<<.03). with




l, o

. code readlng and functional testing not belng different (a.>.05). Code reading

NP

R

detected more Interface faults than did elther of the other methods (a<.01),

with no dlfference between functlonal and structural testlng (a>.05). Thls sug-

Ry v i

gests that the code reading process of abstracting and composing program func-

A_r
"."ll " " L,

tlons across modules must be an effectlve technlque for finding interface faults.
[ Functlonal testing detected more control faults than did elther of the other
methods (a<.01), with code reading and structural testing not belng different :.:
5 (a>.05). Recall that the structural test data generation criteria gxamlned 1s
based on determining the execution paths In a program and derlving test data
that execute 1009 of the program’s statements. One would expect that more
control ﬁath faults would be found by such a technique. However, structural
testlng did not do as well as functional testing In this fault class. The technlque
of code readlng found more computation faults than did structural testing
(a<.05), with functlonal testing not belng different from elther of the other two
methods (a>.05). The three technlques were not statlstically different in the
percentage of faults they detected in elther the data or cosmetic fault classes N

(a>.05 for both).

4.1.3.3.3. Observable Fault Classification

Figure 19 dlsplays the average percentage (wlith standard deviatlons) of

faults from each class that were observable from the test data submitted, yet ’

were not reported by the tester.® The two on-line technlques of functlonal and

5 The standard devlatlons presented In the flgure are high because of the
X several Instances In whlch all observable faults were reported.

- e,
78 =




Al

------

G D

structural testing were not different In any of the faults classes (a@>.05). Note

that there was only one fault In the cosmetlc class.

=ggn'e 19. Characterlzation of the faults observable, but not reported.
Functlonal Structural Overall
Testlngg Testl&

Omlsslon 15.7 (25.4) 21.3 (31.8) 18.5 (28.8)
Commission 19.1 (20.0) 20.1 (18.8) 19.6 (18.3)
Total 18.1 (17.8) 19.9 (16.8) 18.0 (17.3)
Initial. 5.0 (15.4) 14.3 (32.2) 9.8 (25.5)
Control 20.3 (30.8) 21.1 (31.4) 20.7 (30.8)
Data 28.8 (43.5) 7.5 (24.5) 18.3 (38.7)
Computat. 16.0 (31.3) 20.1 (37.8) 18.0 (34.5)
Interface 16.1 (20.0) 20.3 (21.5) 18.2 (20.8)
Cosmetlc 80.0 (50.3) 85.7 (35.9) 73.2 (44.9)
Total 18.1 (17.8) 19.9 (16.8) 19.0 (17.3)

4.1.3.3.4. Summary of Characterization of Faults Detected

Summarizing the major results of the comparison of classes of faults detect-

ed: 1) code reading and functional testing both detected more omlsston faults

and Inltlallzatlon faults than dld structural testing; 2) code readlng detected

more Interface faults than did the other methods; 3) functional testing detected

more control faults than dld the other methods; 4) code readlng detected more

computation faults than dld structural testing; and 5) the on-llne technlques of

functional and structural testlng were not different ln any :lasses of faults ob-

servable but not reported.

Ve

e
v
*w
,
-
=
-
.
.
)




.
AP RV S J

PR

e’

-
Iy

..,
rLd

L)

o x ¥
LR A

pt e

-

4.1.4. Conclusions

Thils study compares the strategles of code readlng, functional testing, and
structural testing across three data sets In three different aspects of software
testing: fault detectlon effectiveness, fault detectlon cost, and classes of faults
detected. Each of the three testing techniques showed merit 1n this evaluation.
The investlgatlon was lntended to compare the different testing strategles in a
representative testing situation, using programmers with a wide range of exper!-

ence, different software types, and common software faults.

The malor results of this study are 1) with the professional programmers,
code reading detected more software faults and had a higher fault detectlon rate
than did funct'onal or structural testing, with functlonal testing detectlng more
faults than did structural testing, and with functlonal and structural testing not
differing In fault detection rate; 2) in one UoM sublect group, code readlng and
functlonal testlng were not different 1n faults found, but were both superior to
structural testing, whlle 1n the other UoM subjlect group-bhere was no difference
among the techniques; 3) with the UoM subjects, the three techniques were not
different 1n fault detection rate; 4) number of faults observed, fault detectlon
rate. and total effort In detectlon depended on the type of software tested; 5)
code reading detected more Interface faults than dld the other methods: and 8)

functional testing detected more control faults than dld the other methods.

In comparing these results to related studles, we find m'xed conclusions. A
prototype analysls done at the Unlversity of Maryland Ir. the Fall of 1981

[Hwang 81] supported the bellef that code reading by stepwlise abstraction does

80

-y vt

PO

SO M AN




R W N W P ¥ T e~~~ T W~ W w v

| Sl ARA S e e S e e e aae g e i g e o a e g

as well as the computer-based methods, with each strategy having its own ad-
vantages. In the Myers experlment [Myers 78|, the three techniques compared
(functional testing, 3-person code reviews, control group) were equally effectlve.
He also calculated that code reviews were less cost-effective than the computer-
based testlng approaches. The first observation Is supported In one study phase
here, but the other observation Is not. A study conducted by Hetzel [Hetzel 78]
compared functlonal testlng, code reading, and ‘‘selective’ testing {a composite
of functlonal, structural, and reading technliques). He observed that functlonal
and ‘‘selectlve’ testing were equally effectlve, with code readlng belng !nferior.
As noted earller, this Is not supported by thls analysis. The study described 1n
thlr analysls examlined the technlque of code reading by stepwlise abstraction,
while both the Myers and Hetzel studles examlned alternate approaches to off-

llne (nonexecutlon-based) review/readlng.

A few remarks are approprlate about the comparison of the cost-
effectlveness and phase-avallabllity of these testing technlques. When examin-
Ing the effort assoclated with a technique, both fault detection and fault lsola-
tlon costs should be compared. The code readers have both detected and isolat-
ed a fault; they located 1t In the source code. Thus. the readlng process con-
d=nses fault detectlon and lsolatlon {nto one activity. Functlonal and structural
testers have only detected a fault; they need to delve Into the source code and
expend addlitional effort In order to isolate the defect. Also. a nonexecutlon-
based readlng process can be applled to any document produced during the de-

velopment process (e.g., high-level deslgn document, low-tevel desizn document.

81

D AT Y ST RO S SN G PLT ATG PRIV Y. YRR v v VT W R T




N M sl A fen 3 ey bRt A A AR S i W ot S SRR et Sl L

..........

source code document). While functlonal and structural executlon-based tech-

.

nlques may only be applled to documents that are executable (e.g., source code),

which are usually avallable later In the development process.

Investigations related to this work Include studles of fault classificatlon

[Welss & Basill 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83,

Baslll & Perricone 84| and Cleanroom software development [Selby, Baslll &

Baker 85]. In the Cleanroom software development approach, technlques such

as code reading are used In the development of software completely off-line (l.e.,

without program executlon). In the above study, systems developed using

Cleanroom met system requirements more completely and had a hlgher percen-

tage of successful operatlonal test cases than did systems developed with a more

traditional approach.

This emplrical study s Intended to advance the understandlng of how varl-

ous software testing strategles contribute to the software development process

and to one another. The results glven were calculated from a set of Indlviduals

applylng the three technlques to unlt-slzed programs — the dlrect extrapolatlon

of the findlngs to other testlng environments Is not Implled. However, valualile

Insights Into software testlng have been galned.

.........
...............



Colie® SRS MG AL S M ARSI ol ™ A i Ar i S - At R A it aff ashih o oS s SN A i AR i i e el sout e T R Y T T T T A N R T W T S W w wnw mw =y oy —
. L e T T T T T T TN T A Pl S Sela i e AT A e

e “HET TN

.. “
4.2. Cleanroom Development Approach Analysis :
The need for dlsclpline In the software development process and for high
I quallty software motlvates the Cleanroom software development approach. In __
additlon to Improving the control durlng development, this approach Is Intended .
to dellver a product that meets several quallty aspects: a system that conforms
with the requlrements, a system with high operational rellabllity, and source i
code that Is easlly readable and modiflable.
The next sectlon describes the Cleanroom approach and a framework of
goals for characterizing its effec:. The followlng sectlon presents an emplrical l
study uslng the approach. The results are then glven of an analysls comparlng
projects developed using Cleanroom with those of a control group. The overall '
concluslions are presented in a final sectlon.
4.2.1. Cleanroom Software Development Method .
The Federal Systems Division of IBM [Dyer 82¢, Dyer & Mllls 82] preserts
the Cleanroom software development method as a technlcal and organlizational )
approach to developlng software with certlflable rellablility. The ldea is to deny l
the entry of defects during the development of software. hence the term ""Clean-
rocm.”” The focus of the methoc s Ilmposing discipline cn the development pro- |

cess by integrating formal methods for specification and deslgn, complete ofl-line

development. and statlstically based testlng. These components are {ntended to

LA

contribute to a software product that has a hlgh probabillty of zero Jdefects and

consequentiy a hlgh measure of operational rellabillty.

83




RAD-R168 738 EVALUATIONS OF SOFTHARE TECHNOLOMES TESTING CLEANROOM 2438
AND METRICSCU) MARYLAND UNIV COLLEGE BRK DEPT OF
CONPUTER SCIENCE R W SELBY MAY 85 TR-1.

UNCLASSIFIED RFOSR-TR-86-0279 F49620-80-C-0001 F/6 9/2

-




.y“l

AN S e,

-

P

(RN L &

N

PCE A

IOR

LA R el e T etk ey

LN

X

e

1.4

=]

HART

.

MICRNCET




) .
AN e e

SO I
NI I I S, N NI

. St e e A e
e U
. LN arptt .

The mathematically-based design met,liodology of Cleanroom Includes the

use of structured specificatlons and state machine models [Ferrentlno & Mills
77]. A systems englneer introduces the structured speclfications to restate the
system requlrements precisely and organlze the complex problems into manage-
able parts [Parnas 72b]. The speclficatlons determ!ne the *‘system architecture"’
of the Interconnections and groupings of capabllitles to which state machlne
deslgn practices can be applled. System Implementation and test data formula-

tlon can then proceed from the structured specifications independently.

The right-the-first-tlme programming methods used in Cleanrcom are the
ldeas of functlonally based programming in [Mills 72a, Linger, Mllls & WItt 79].
The testlng process Is completely separated from the development process by
not allowing the developers to test and debug thelr programs. The developers
focus on the technlques of code Inspectlons [Fagan 78], group walkthroughs
[Myers 78], and formal verification [Hoare 89, Linger, Mills & WI1tt 79, Shankar
82, Dyer 83] to assert the correctness of thelr implementation. These construc-
tlve technlques apply throughout all phases of development, and condense the
activitles of defect detectlon and !solatlon Into one operatlon. This discipllne s
Imposed with the intentlon that correctness Is “*designed’ Into the software, not
“tested” In.

The notlon that "*Well, the software should always be tested to

find the faults™ s ellmlnated.

In the statistically based testing strategy of Cleanroom. Independent testers
simulate the operational environment of the system with random testing. Thls

testing process Includes deflnlng the frequency dlstribution of Inputs to the svs-

84

- '..‘_- - . - . - - C . - . - . ~
. . IR
"A“\;‘.A oDt o8

.. -..--“ ‘>_...-.-.\_.. ‘A_..~‘-_..A' L. "n'”-:l'.-'.-‘\"-'-‘
VNP S ST S S-S W W R T I WO R T R S L L L L




LAC At et e it o g ARSI }-_.ﬁ_,-,w‘_",v_‘w‘_‘mf A 2 AN e 2 A P P O Wiy S gy

tem, the frequency distribution of different system states, and the expanding
hierarchy of developed system capabllltles. Test cases then are chosen random-
ly and presented to the serles of product releases, while concentrating on func-

tlons most recently dellvered and malntalnlng the overall composite distributlion

of Inputs. The independent testers then record observed fallures and determlne

e g 2D 4

an oblectlve measure of product rellabllity. It 1s belleved that the prior
knowledge that a system will be evaluated by random testing wlll affect system

rellabllity by enforcing a new discipline into the system developers.

4.2.1.1. Investigation Goals

Some Intrigulng aspects of the Cleanroom approach Include 1) development
wlithout testing and debugging of programs, 2) Independent program testing for
quallty assurance (rather than to find faults or to prove *‘correctness’” [Howden
76]), and 3) certificatlon of system rellabllity before product delivery. In order
to understand the effects of using Cleanroom, the following three goals are pro-
posed: 1) characterize the effect of Cleanroom on the dellvered product, 2)
characterize the effect of Cleanroom on the software development process, and
3) characterize the effect of Cleanroom on the developers. An application of the
goal/question/metric paradlgm [Basill & Selby 84, Baslll & WWelss 84] leads to

the framework of goals and questlons for thls study appearing In Flgure 20.

The emplrical study executed to pursue these goals Is described {n the followlng

cection.

LT Tl Y yvr rvv -~ >
.
.
N

R

R . L e e R . [ et . . S - -
R R © e LR S S S S S S S BT L Y SR NP |
bbb dadakebo e dod o Salald oo S o

3
A
|
{
r
3
X
,
2
&
-
-
r
r

y

’

b

b

r
a
P‘v
g
;

VY VNS S




“.' .“}. Pty

Y

£ 0 8
a a8,

D

doA

» s L
22207270

c e ala”
- Waw, W, WY

Flgure 20. Framework of goals and questlons for Cleanroom development
approach analysls.

I. Characterlize the effect of Cleanroom on the dellvered product.
A. For Intermediate and novice programmers bulldlng a small system, what
were the operatlonal propertles of the product?
1. Did the product meet the system requirements?
2. How did the operational testing results compare with those of a con-
trol group?

B. What were the statlc propertles of the product?

1. Were the slze propertles of the product any different from what
would be observed In a traditlonal development?

2. Were the readabllity propertles of the product any different?

3. Was the control complex!ity any different?

4. Was the data usage any different?

5. Was the Implementatlon language used any differently?

C. What contribution dld programmer background have on the flnal pro-
duct quallty?

II. Characterize the effect of Cleanroom on the software development process.

A. For Intermedlate and novice programmers bulldlng a small system, what
technlques were used to prepare the developlng system for testing
submisslons?

B. What role did the computer play In development?

C. Did they meet thelr dellvery schedule?

III. Characterlze the effect of Cleanroom on the developers.

A. When Intermedlate and novice programmers bullt a small system, did

the developers mlss the satisfaction of executing thelr own programs?
1. Di1d the missing of program execution have any relatlonshlp to pro-
grammer background or to aspects of the dellvered product?

B. How was the design and codlng style of the developers affected by not
belng able to test and debug?

C. Would they use Cleanroom agaln?

4.2.2. Empirical Study Using Cleanroom

This sectlon describes an emplrical study comparlng team projects

developed uslng Cleanroom wlth those uslng a more conventlonal approach.

88




4.2.2.1. Case Study Description

Subjects for the empirical study came from the “*Software Deslgn and De-

velopment’ course taught by F. T. Baker and V. R. Baslll at the Unlversity of

Maryland in the Falls of 1982 and 1983. The inltlal segment of the course was
devoted to the presentatlon of several software development methodologles, in-
cluding top-down design, modular specificatlon and design, PDL, chlef program-
mer teams, program correctness, code reading, walkthroughs, and functlonal
and structural testing strategles. For the latter part of the course, the lndlvidu-
als were dlvided Into three-person chlef programmer teams for a group project
[Baker 72b, Mllls 72b, Baker 81]. We attempted to dlvide the teams equally ac- -
cording to professional experlence: academlc performance, and implementation ;
language experlence. The subjects had an average of 1.8 years professional ex-
perlence and were computer sclence malors with Junlor, senlor, or graduate

standing. Fligure 21 dlsplays the dlstributlon of the sublects’ professional ex-

perience.

Flgure 21. Subjlects’ professlonal experlence In vears.

X
X X o
X X X X N
- X XXXX X -
X XXXXX X X X

X

XXXXX X XX XX XX XX XX X X




Y o o P P e T SO P PP T rpyny prapTEaray

R
"o
4

Ty

Oe (e

et
P

A requirements document for an electronlc message system (read, send,

-~

malilng lists, authorized capabllitles, etc.) was distributed to each of the teams.
The prolect was to be completed In slx weeks and was expected to be about
1200 llnes of Simpl-T source [Basill & Turner 78]. 7 The development machine

was a Univac 1100/82 running EXEC VIII, with 1200 baud !interactlve and re-

T, Y, LR

mote access avallable.

The ten teams In the Fall 1982 course applled the Cleanroom software de-
velopment approach, while the flve teams In the Fall 1983 course served as a
control group (non-Cleanroom). All other aspects of the developments were the
same. The two groups of teams were not statlstically different 1o terms of pro-
fesslonal experlence, academic performance, or implementation language experl-
ence. If there were any blas between the two tlmes the course was taught, it
would be In favor of the 1983 (non-Cleanroom) group because the modular
deslgn portlon of the course was presented earller. It was also the second time

F. T. Baker had taught the course. Note that the teams in the non-Cleanroom

group applled a development approach simllar to the *‘discipllned team' ap-

proach examlined In an earller study [Baslll & Relter 81].

The first document every team In elther group turned !n contalned a svs-

tem speclficatlon, composite deslgn dlagram, and !mplementation plan. The

7 Simpl-T 1s a structured language that supports several string and flle han-
dllng primltlves, In addltlon to the usual control flow constructs avallable, for
example, In Pascal. If Pascal or FORTRAXN had been chosen, 1t would have
been very llkely that some Individuals would have had extensive experience with
the language, and thls would have blased the comparlson. Also, restricting ac-
cess to a compller that produced executable ccde would have been very difficult.

88

"1
A
N
.l
-
<

-

J
P

. K
e T T e T T e e e T T T e T e e e e, St R T N N AT S P T
PN R S TR P PR AR WA S SRR R RTRE SR YR P R P U Wil S PSS U P G i P I s P AP A SR PN, o a PO PR |




DS LA e s g
M ‘. DR I . ..

latter element was a serles of milestones describlng when the varlous functlons
within the system would be avallable. At these various dates (minlmum one
week apart, maximum two), teams from both groups would then submit thelr
systems for testing. An lndependent party would then apply statistically based
testing to each of these dellverles and report to the team members both the suc-
cessful and unsuccessful test cases. The latter would be lnciuded In the next
test sesslon for verlficatlon. Recall that the Cleanroom teams could not execute
thelr programs — they had editlng and syntax-checklng capabllities only. They
had to rely on the technlques of code readlng, structured walkthroughs, and In-
spections to prepare thelr programs before submlission. On the other hand, the
non-Cleanroom teams had full access to compllation and executlon facllitles to

test thelr systems prior to Independent testing.

All team projects were evaluated on the use of the development techniques
presented In class, the Independent testing results, and a final oral Interview. In
addltlon to these sources, Information on the team projlects was collected from a
background questlonnalre, a postdevelopment attitude survey, static source code
analysls, and operating system statlstlcs. The following sectlon brlefly describes
the operationally based testing process applled to all projects by the Indepen-

dent tester.

4.2.2.2. Operational Testing of Projects

The testing approach used In Cleanroom s to simulate the developing

system’'s environment by randomly selectlng test dara from an “operational

89

\‘. M -

. D T UL T T S e e L A LA
L PPN AL VL W U DU WP P Wr-SPNE T TN ST ST WERr Sy T, A Dy T D i DY

5450

oSt

R L P
PR W

e
R

\

'

. . - - I Y - .'. .t - =
I AEOEOL S SR T S T VS W T ST A‘L:d




proflle,’” a frequency distributlon of Inputs to the system [Thayer, Lipow & Nel-
son 78, Duran & Ntafos 81]. The projects from both groups were tested Interac-
tlvely at the mllestones chosen by each team by an Independent party (l.e., R.
W. Seiby). A distributlon of Inputs to the system was obtalned by !dentifylng
the loglcal functlons In the system and asslgning each a frequency. Thls fre-
quency asslgnment was accomplished by polllng eleven well-seasoned users of
the Unlversity of Maryland Vax 11/780 malllng system. Then test data were
generated randomly from thls proflle and presented to the system. Recording of
fallure severlity and times between fallure took place durlng the testing process.
The operatlonal statlstlcs referred to later were calculated from fifty user-session
test cases run on the flnal system release of each team. For a complete explana-

tion of the operatlonally based testing process applled to the projects, Including

test data selectlon, testing procedure, and fallure observation, see Appendix C.

4.2.3. Data Analysis and Interpretation

The analysls and Interpretation of the data collected from the study appear
In the followlng sectlons, organized by the goal areas outllned earller. In order
to address the varlous questions posed under each of the goals, some raw data
usually wlll be presented and then lnterpreted. Flgure 22 presents the number
of source llnes, executable statements, and procedures and functions to give a

rongh view of the systems developed.

90

-

. o A P P T I LIRS Y A P . P T o S s .
PR R S P 4.‘-1 S T e T T e T TS T e e,
A ok 8 d 2 2ot g Y ally S g - 0¥ o g e gl M > P G N AT P P Y T Y Seaelinboind oibed-cndh oodhmedhesidhah o tn B eaetondlesh ol




Flgure 22, System statlstlcs.
Team Cleanroom Source Executable Procedures &
Lines Statments Functlons
A yes 1681 813 55
B yes 1626 717 42
C yes 1118 573 42
D yes 1046 477 30
E yes 1087 824 32
F yes 1213 440 35
G yes 1198 581 31
H yves 1876 550 51
I ves 1305 808 23
J ves 1052 658 24
a no 824 110 26
b no 1429 633 18
C no 2264 999 46
d no 1829 626 67
e no 1310 459 43

4.2.3.1. Characterization of the Effect on the Product Developed

Thls section characterlzes the dlfferences between the products dellvered by
both of the development groups. Initlally we examlne some operational proper-

tles of the products, followed by a comparlison of some of thelr static propertles.

4.2.3.1.1. Operational System Properties

In order to contrast the operational properties of the systems dellvered by
the two groups. both completeness of Implem«ntation and operational testing
results were examined. A measure of Implementation completeness was caleu-
ianted by partitioning the requlred system Into siXteen lozical funetlons ez,

send mall to an Indlvidual, read a plece of mail, respond, add voursellf to 1 mull-

=3
I3
jaos
o

—

~0o Each funetlen in an 'mplementation was then asstoned a vaie of

91

S TP P O PP AP U S R Rt T S-S Sy G B LIRS Gy D e hda o lnd acas anal oAt

"'. L
k-




‘IV.I'I"'".

S

two If 1t completely met lts requirements, a value of one If it partlally met
them, or zero If It was inoperable. The total for each system was calculated; a
maximum score of 32 was possible. Flgure 23 dlsplays this subjectlve measure
of requirement conformance for the systems. Note that In all figures presented,
the ten teams using Cleanroom are In upper case and the flve teams uslng a
more conventlonal approach are In lower case. A first observatlon Is that six of
the ten Cleanroom teams bullt very close to the entlre system. Whlle not all of
the Cleanroom teams performed equally well, a majority of them applled the
approach effectlvely enough to develop nearly the whole product. More Impor-
tantly, the Cleanroom teams met the requirements of the system more com-

pletely than did the non-Cleanroom teams.

Flzure 23. Requlrement conformance of the svstems.
J D
I FE A B QC H
de b ¢ a
+-—t— + +— - —+———t
0] 16 32
22 % 58 % 91 9% 100 %%
. \Nann-\Whitney 3 siznlf. = 08K

To compare testing results among the systems developed In the two groups,
ity random user-sesslon test cases were executed on the flnal release o each

system to slmuiate 1ts operatlonal environment. [f the final release of a4 svsiem

% The slzniflcance levels for the NMann-MWhitney statlstles reported are o4
probabllity of Tvpe I error In an one--alled rest.

92



B N o R T I P vy

\ -

; performed to expectations on a test case, the outcome was called a *‘success;"” I
not, the outcome was a ‘‘fallure.” If the outcome was a ‘‘fallure’” but the same
fallure was observed on an earller test case run on the final release, the outcome
was termed a ‘‘dupllicate fallure.”” Flgure 24 shows the percentage of successful

; . test cases when duplicate fallures are not lncluded. The flgure displays that

Cleanroom projects had a higher percentage of successful test cases at system
deltvery. ® When duplicate fallures are Included, however, the better perfor- "y

mance of the Cleanroom systems Is not nearly as slgnificant (MW = .134). 1° "

Thils Is caused by the Cleanroom projects having a relatlvely hlgher proportlon

of duplicate fallures, even though they dld better overall. Thls demonstrates

that whlle reviewlng the code, the Cleanroom developers focused less than the

other groups on certaln parts of the system. The more uniform review of the

whole system makes the performance of the system less sensitlve to Its opera- ]

YO

tlonal proflle. Note that operatlonal environments of systems are usually H

difficult to deflne a prlor! and are subjlect to change.

. o Lt T [ AR
: JAJ DN AJJ. .

9 Although not consldered here, various software rellability models have
been proposed to forecast system rellabllity based on fallure data [Musa 75.
Currlit 83, Goel 83|.

1 To be more succlnct, MW will sometimes be used to abbreviate the
significance level of the Mann-Whltney statlstle.




Figure 24. Percentage of successful test cases durlng operatlonal testing
‘without duplicate fallures).

D J H
E I F A BGC
¢
d e b a
+ -+ —— —— —+ ~+— — ~+
58.0 100

Mann-Whltney signlf. = .055

In both of the product quallty measures of lmplementatlon completeness

and operatlonal testing results, there was qulte a varlaticn In performance.!! A
wide varlatlon may have been expected wlith an unfamlliar development tech-
nlque, but the developers using a more tradltlonal approach had a wider range
of performance than dld those using Cleanroom In both of the measures (even
with twlice as many Cleanroom teams). All of the above dlifferences are
magnlfled by recalllng that the non-Cleanrcom teams did not develop their sys-
tems In one monollthlc step, they (also) had the beneflt of pertodlc operatlonal
testing by Independent testers. Since both groups of teams had Independent
testing of all thelr dellverles, the early testing of dellverles must have revealed

most faults overlooked by the Cleanroom developers.

1 An alternate perspectlve Includes only the more successful prolects from
each group In the comparison of operational product quality. MWhen the best
80°¢ from each approach are examined (l.e., remcving teams 'd, ‘e,” "A,” 'E." 'F.’
and 'I'), the Mann-\Whltney significance level for comparing Implementation
completeness becomes .045 and the slgnlficance leve]l for comparing successtul
test cases (wlithout dupllcate fallures) becomes .03+4. Thus, comparing the best
teams from each approach Increases the evidence In favor of Cleanroom n both
of these product quailty measures,

g4

!

PRI UL TP SIS S S U I PG SN U P PRSP WAL YA 1A S DA GOy W R P g VS U T Y VIV U VI YU DI T DO T TN T T N Py




CRLAEAE RS R R il LA GRS o N T T Y T ey e, YT TN WL TR S T S, N T v e W v e T W v

These comparisons suggest that the non-Cleanroom developers focused on a
‘‘perspective of the tester,”” sometimes leaving out classes of functlons and caus-
Ing a less completely lmplemented product and more (especlally unlque) fallures.
Ofl-llne revlew technlques, however, are more general and thelr use contrlbuted
to more complete requirement conformance and fewer fallures In the Cleanroom
products. In additlon to examlnlng the operational propertles of the product,

varlous statlc properties were compared.

4.2.3.1.2. Static System Properties

The first question In thls goal area concerns the slze of the flnal systems.
Flgure 22 showed the number of source llnes, executable statements, and pro-
cedures and functlons for the varlous systems. The projects from the two
groups were not statistically dlfferent (MW > .10) In any of these three slze at-
tributes. Another question In thls goal area concerns the readabllity of the
dellvered source code. Two aspects of readlng and modifying code are the
number of comments present and the density of the ‘‘complexlty.”” In an at-
tempt to capture the complexity denslty, syntactlec complexity [Bastll &
Hutchens 83] was calculated and normalized by the number of executable state-
ments. In addltion to control complexity. the syvntactlc complexity metric ccn-
slders nesting depth and prime program decompositlon [Linger, Mills & Wittt
79]. The developers using Cleanroom wrote code that was more highly com-
mented (MW = .089) and had a lower complex!ity densltty (MW = .079) than

dld those using the tradltional approach. A calculation of elrher scftware scl-

I T U e

to ) . PR I T C .A'.'.-\‘.'-.-..‘ i S R T SN S )
PR P WE AP A DS WP AT UL DU Ry i Y S i WP W O AP Wil WA W WA WA R Y




Lty PN g B A . L - T P SN gl s i AP Sl i Yo A Tadon Ll i i MiaR Ak dnl ik oug el Ank sl sale Sl gl e A and

ence effort [Halstead 77}, cyclomatlc complexity [McCabe 78], or syntactic com-

DO L

plexity wlthout any slze normallzatlon, however, produced no signlificant :

[

differences (MW > .10). This seems as expected because all the systems were

P e

bullt to meet the same requirements. ’ .

Comparlng the data usage In the systems, Cleanroom developers used a . 5
greater number of global data ltems (MW = .071). Also, Cleanroom projects :
& pcssessed a hlgher percentage of asslgnment statements (MW = .056). These

last two observations could be a manifestation of teachlng the Cleanroom sub-
-Li Jects modular design later In the course (see Case Study Description), or poss!-

bly an Indlcation of using the approach.

iy Some Interestlng observatlons surface when the operational quality meas-

.

.

ures of the Cleanroom products are correlated with the usage of the Implemen-
tatlon language. Both percentage of successful test cases (without dupllcate

fallures) and Implementatlon completeness correlated with percentage of pro-

¥ SN

cedure calls ‘Spearman R = .85, signlf. = .044, and R = .57, signlf. = .08,
respect,h{ely) and with percentage of If statements (R = .82, signlf. = .058, and
R = .55, signlf. == .10, respectively). However, both of these two product quall-
Ly measures correlated negatlvely with percentage of case statements (R = -.86,

‘:: signif. = .001, and R = -.89, signlf. = .027, respectlvely) and with percentage

of whlle statements (R = -.85, signlf. = .044, and R = -.49, slgnif. = .15. *

respectively). There were also some negative correlations between the product

P i)
ey e

quallty measures and the average software sclence effort per subroutlne (R = 3

—.52. slgnlf. = .12, and R = -.74. slgnlif. = .013, respectlvely) and the averaze

N 96




CR SO A AN B i SR M M AR A A A Taie Sl A b Al A Pk Al Ahdeitan i ol e &Y N A !

R A A A S Al il Sah Ml Aas dn s ol R e cak Sad Syt Sl Aug

number of occurrences of a variable (R = -.54, slgnlf. = .11, and R = -.58,
signif. = .09, respectively). Consldering the products from all teams, both per-
centage of successful test cases (wlthout dupllicate fallures) and Implementation
completeness had some correlation with percentage of If statements (R = .48,
signif. = .07, and R = .45, signlf. = .09, respectively) and some negative corre-
lation with percentage of case statements (R = -.48, slgnlf. = .07, and R =
~.42, signlf. = .12, respectlvely). Nelther of the operational product quallty
measures correlated with percentage of assignment statements when elther all
products or Just Cleanroom products were consldered. These observatlons sug-

gest that the more successful Cleanroom developers simpllfied thelir use of the

Implementation language; l.e., they used more procedure calls and If statements,
used fewer case and whlile statements, had a [ower frequency of variable reuse,

and wrote subroutines requlring less software sclence effort to comprehend.

4.2.3.1.3. Contribution of Programmer Background

When examlinlng the contributlon of the Cleanroom programmers' back-
ground to the quallty of thelr final products, general programming language ex- "
pertence correlated wlith percentage of successful operational tests (wlthout du-

plicate fallures: Spearman R = .68, signlf. = .04: with dupllcates: R = .70, slg-

nlt. = .03) and with Implementatlon completeness (R = .55; slgnif. = .10). No

relatlonshlp appears between elther operational testlng results or mplementa-

tlon completeness and elther professional’® or testlng experlence. These

% In fact, there are very sllght negatlve correlations between years of pro-
fesslonal experlence and both percentage of successtful tests (without duplicate

97

1
o
~‘J

e L e e P R L~ o P UL I NN S e
. L S S T S N N S L T O T R U U I S T At
DT VRN SRV PSP AT ST S LA PR VOIS PREPE TP TYR VSV UL VS VI DR VY TPV VI Ol T P V. S U A R U O i, -".L‘..ej




P

Ty

background/quallty relatlons seem conslstent with other studles [Curtls 83].

4.2.3.1.4. Summary of the Effect on the Product Developed

In summary, Cleanroom developers dellvered a product that 1) met system
requirements more completely, 2) had a higher percentage of successful test
cases, 3) had more comments and less dense complexity, and 4) used more glo-
bal data Items and a higher percentage of asslgnment statements. The more
successful Cleanroom developers 1) used more procedure calls and If statements,
2) used fewer case and while statements, 3) reused varlables less frequently, 4)
developed subroutines requiring less (software sclence) effort to comprehend, and

5) had more general programmling language experience.

4.2.3.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how
effectlvely they felt they applled off-llne review techniques In testing thelr pro-
Jects (see Flgure 25). Thls was an attempt to capture some of the Informatlon
necessary to answer the first question under thls goal (question II.A). In order
to make comparisons at the team level, the responses from the members of a
team are composed Into an average for the team. The responses to the question
appear on a team basls In a histogram in the second part of the figure. Of the
Cleanroom developers, teams 'A," 'D,’ 'E,"” 'F,’ and 'I" were the least confldent In

thelr use of the off-llne review technlques and these teams also performed the

fallures: R = -.486, signif. = .18) and Implementation completeness (R = - 47T,
signif. = .17).

98

TiteT T
e 4 T T Y




Ca v E

T W Y T T ™ oy T W™

worst 1n terms of operational testing resuits; four of these flve teams performed
the worst In terms of Implementatlon completeness. Ofl-llne review effectiveness

correlated with percentage of successful operational tests (without duplicate

fallures) for the Cleanroom teams (Spearman R = .74; slgnlf. = .014) and for
all the teams (R = .76; signif. = .001); 1t correlated with implementation com-
pleteness for all the teams (R = .538; slgnlf. = .023). Nelther professional nor

testing experlence correlated with off-line review effectiveness when elther all

teams or Just Cleanroom teams were consldered.

99

LIS ) Al n taia e e ma s aaa

e e e e e e LU
‘o s ot

- R L I S
tevataatalaalatals

P A P ot - . PR s .
L - . e B . . N - . .
P IR R W P DR U T I PPN YR N SN SRR S NPt SR AUIL I RR R




IRARASAIMA oA A A S T ~ ‘.II;'.'.I.'AI.!.!.!.! v " bk " SR Y e e S0 B Ae_ it lhue it LaD U i e S L

Flgure 25. Breakdown of responses to the attitude survey question, ‘Did ?
you feel that you and your team members eflectively used off-line review .
techniques In testlng your proJect?’. (Responses are from Cleanroom q
teams.) !3 .

14 — Yes, they were effective for testing all parts of the program f'

5.5 — We used them but felt that they were only appropriate for certaln parts of - ;
the program : '

8.5 — We used them occaslonally, but they were not really a major contributing
factor to the development

0 — Dl1d not really use them at all

feellng of effectlve use of
off-line review technlques: both groups
(team ‘e’ does not appear because of lack of response)
J -
H :
E I G '
D F A C B
d ¢ a b
+- + —+— + — —+— + —t— —+
did not use effective for
all parts
Mann-\Whitney slgnlf. = .065 .
The histogram in Flgure 25 shows that the Cleanroom developers felt they K
applled the off-lilne review techniques more effectively than did the non- ::
Cleanroom teams. The non-Cleanroom developers were asked to give a relative '
breakdown of the amount of time spent applylng testing and verification tech- J
niques. Thelr aggregate response was 39°¢ off-llne review, 32¢¢ functional test- I:j
Ing, and 9% structural testlng. From thls breakdown, we observe that the . <
13 There are half-responses becausge an Indlvidual checked beoth the second -~

and third cholees. The responses total to 28, not 30, because two separate
teams i0st 2 member late In the project. (See Dlstinctlon Amony Teams).

100 -




non-Cleanroom teams primarily relled on functional testing to prepare thelr sys-
tems for independent testing. Since the Cleanroom teams were unable to rely
on testing methods, they may have (felt they had) applied the off-line review

technlques more effectively.

Since the role of the computer s more controlled when using Cleanroom,
one would expect a difference In on-llne actlvity between the two groups. Flg-
ure 268 displays the amount of connect time that each of the teams cumulatlvely
used. A comparison of the cpu-tlme used by the teams was less statistically
significant (MW = .110). Nelther of these measures of on-llne actlvity related
to how effectlvely a team felt they had used the off-llne technlques when elther
all teams or Just Cleanroom teams were consldered. Although non-Cleanroom
team 'd’ dld a lot of on-llne testing and non-Cleanroom team ‘e’ dld little, both
teams performed poorly In the measures of operational product quality discussed
earller. The operating system of the development machlne captured these sys-
tem usage statlstles. Note that the time the ladependent party spent testlng Is
Included. !* These observatlons exhibit that Cleanroom developers spent less

time on-llne and used fewer computer resources. These results emplrically sup-

port the reduced role of the computer In Cleanroom development.

M \When the t'me the Independent tester spent Is not !ncluded. the

slgnlficance levels for the non-parametric statistics do not change.

101

Y

NSy

O

R T TR I
PRI

PR

L
)
AR

PR . P RIS .".'r.' . e A T A, ‘ .ot - . v W - PR
. N W T, T T Bl S S gt St S T e L T T s T e Y T Cat et a e e T e
FIL PRI ST T PR U TV GRS U S L MR T - TR ST TR S TR VS VO VG P LT TS PRS- EIPE WE- S W VI W W o




A .u A TP TIOETTLS SOW  aLe e - « e

RARAA [ LTO8

~ Flgure 26. Connect time In hours during project development. 15

~

. G

So BE C I HF D JA

N~ e b e a d

;l;- +———t————t———— + —————t
ﬁ 0.0 155.0
~ Mann-Whitney signif. = .089

r

Schedule slippage contlnues to be a problem in software development. It
would be Interesting to see whether the Cleanroom teams demonstraned any
more discipline by malntalnlng thelr original schedules. All of the teams from
both groups planned four releases of thelr evolving system, except for team 'G’
which planned flve. Recall that at each dellvery an independent party would
operatlonally test the functlons currently avallable In the system, accordlng to
the team’'s Implementation plan. In Flgure 27, we observe that all the teams us-
Ing Cleanroom Kept to thelr orlginal schedules by making all planned deliverles;

only two non-Cleanroom teams made all thelr scheduled dellverles.

3 Non-Cleanroom team ‘e’ entered a substantlal portlon cf lts system on a :
remote machine, only uslng the Unlvac computer malnly for compllatlon and
execution. (See Dlstinctlon Among Teams.) i

- . comty .t .
S ey "'AJ‘ TR T T P LN
“ RERY WP L A S PP P ST VS Gy Y. G s W PRr ¢




A
f-::
Figure 27. Number of system releases. ’
J .-
I .';Z
H v
F [y
E
D '.‘-
C o
B b
A G g
e c
d a b
+— —+ - ~+— -+ ~+— —t+
0 1 2 3 4 5 8 K
Mann-Whltney slgnlf. = .008 -
=3
4.2.3.2.1. Summary of the Effect on the Development Process ZZ:
Summarizing the eflect on the development process, Cleanroom developers ’
b
1) felt they applled off-llne review techniques more effectlvely, whlle non- Iy
Cleanroom teams focused on functional testing; 2) spent less tlme on-llne and ::
used fewer computer resources; and 3) made all thelr scheduled dellveries. N
4.2.3.3. Characterization of the Effect on the Developers .
The flrst questlon posed In thls goal area 1s whether the indlviduals using )
Cleanrcom mlssed the satisfaction of executing thelr own programs. Flgure 28
presents the responses to a question tncluded In the postdevelopment attlitude
survey on thls 1ssue. As mlzht be expected, almost all the Indlviduais missed
some aspect of program execution. As might not be expected. however, thls _\

mlssing of program execution had no relatlon to elther the product quality

103

et e e L e R T T Y L T :".GN.'_..'_'.“.‘,V‘:',' L RS
N ISR SARND NG LI T I SrE P uR G VY DY IR S U N R VA N TN A T T P N P T R PRI T Y T T % VA PR TR P Y




) . . - L R S - « VT -

. .
-
¢ o8
)

.

.
R

A D
-

measures mentloned earller or the teams’' professional or testing experlence. :_
-
. Also, missing program execution dld not Increase wlth respect to program size .

. (see Figure 29). .

L)
-
» »
g
.
L
-
h“
-
o
\ "
. e
- )
~
- “J
-4
X ~ e
=Y
w9
an
P

104

LI R T - T e L. P T .
LR WS TSP W N AT AT ST WS- TS G VS PU VY S P4 DT PN VU e O




RN AR S YL N N N M oM gt g i g ol S SN U B A G SN A S At A A M A A A b Ad el kel il o g

Figure 28. Breakdown of responses to the attitude survey question, '‘Did
you miss the satlsfactlon of executlng your own programs?’’.

13 - Yes, I missed the satlsfactlon of program execution.
11 - I somewhat missed the satlsfactlon of program executlon.
4 - No, I did not mlss the satlsfactlon of program executlon.

Fl_g_ure 29. Relatlonshlg of program slze vs. mlsslng program executlon.

10.0 +

|

|

Yes - |

|

+
| DJC
|

|
Missed |
Program +
Executlon |
|
l
|
+
|
l
|
|

Some -

4.0
921.0 2001.0

No (3.0) Source Llnes

Spearman correlatlons: —.R3 (slgnif. = .002) with source llnes: -.70 (slgalf. =
.03) with number separately compllable modules: —.37 (slznlf. = .0
with number procedures and functions.

—

Figure 30 dlsplays the replles of the developers when they were asked how

thelr design and codlng style was affected by not belng able to test and debug.

At first 1t would seem surprising that more people dld not modify thelr develop-

R

1
=
1
4
[ 7]

!
4

L.A.",,-.’_.



[P

ment style when applylng the technlques of Cleanroom. Several persons men-
tloned, however, that they already utlllzed some of the ldeas In Cleanroom.
Keeplng a simple deslgn supports readabllity of the product and facliitates the
processes of modificatlon and verificatlon. Although some of the objective pro-
duct measures presented earller showed differences In development style, these

sublectlve ones are Interesting and lend Insight Into actual programmer

behavlor.

Fligure 30.
Breakdown of responses to the attltude survey question, ‘‘How was your
deslegn and codlnéityle affected by not belng able to test and debug?’.

2 - Yes, my style was substantlally revised.

15 - 1 modifled some of my tendencles.

:jj 11 - It dld not affect my style at all.

::‘_j Frequently mentloned responses Include

— kept deslgn simple, attempted nothing fancy

— kept readabllity of code In mind

— already was a user of off-llne revlew technlques

) - very careful scrutiny of code for potentlal mlstakes

\ — prepared for a larger range of inputs

One indlcator of the Impression that somethlng new leaves on people s
whether they would do It agaln. Flgure 31 presents the responses of the indivi-
duals when they were asked whether they would choose to use Cleanroom as -!-
ther a software development manager or 3_5 a programmer. Even though these

responses were gathered (Immedlately) after course completlon, . .bjects desirin

. to “"please the Instriuctor”™ may have responded favorably to thls type of ques-
tion regardless of thelr true feellnzs, Practicaliy evervone 'nolleated a wiilinz-
ness to apply the approach azaln., [t is Inreresting o ome g z

E e A R




LA S YA it A SR M IAR AN AN AN e B Sih ~Min dol b St Ak Ani tad A0 g Sl Tad Yol i U S St v S0l avilh ot Ak adet b et ol

number of persons In a managerial role would choose to always use 1t. Of the
persons that ranked the reuse of Cleaproom falrly low 1n each category, four of
the flve were the same people. Of the six people that ranked reuse low, four
were from less successful projects (one from team 'A’, one from team 'E' and
two from team 'I'), but the other two came from reasonably successful develop-
ments (one from team ‘'C’' and one from team 'J'). The particular 1ndlviduals

on teams 'E,’ ’'I,” and 'J’ rated the reuse falrly low in both categorles.

Figure 31.
Breakdown of responses to the attitude survey question, *"Would you use
Cleanroom agaln?’’. {One person dld not respond to thls questlon.)

As a software development manager?
8 — Yes, at all tlmes
14 - Yes, but only for certaln projects
S5 — Not at all
As a programmer?
4 — Yes, for all projects
18 — Yes, but not all the time
5 - Only If I had to
0 - I would leave If I had to

4.2.3.3.1. Summary of the Effect on the Developers

R N

In summary of the effect on the developers, most Cleanroom developers 1)

modlfled In part thelr development style, 2) mlssed program execution., and 3)

Indlcated they would use the approach agaln.

4.2.3.4. Distinction Among Teams

In splte of efforts to balance the teams accordlng to varlcus factors (see

Cuge Study Descriptlon), a few differences among the teamls were apnparent.

107

ST -.\'.*.‘. S e >.‘\. . ,.‘._“._“.. T S SN

'n' -'~'-".“. ) .4 ."‘-'."-"'; -~ T . ‘
PSPPSR SRP T SRP P WP T P VR S PSP T S P A AP A P P T Ty 'AX‘AL\L‘A‘-‘L‘L’L‘L L’LAL_‘L‘LAL‘LA;L

i
3




Two separate Cleanroom teams, 'H' and °l," each lost a member late In the pro-
Ject. Thus at proJect completion, there were eilght three-person and two two-
person Cleanroom teams. Recall that team 'H' performed qulte well accordlng
to requirement conformance and testing results, while team 'I' did poorly. Also,
the second group of subjects did not divide evenly lnto three-person teams.
Slnce one of those Indlviduals had extenslve professlonal experlence, non-
Cleanroom team ‘e’ consisted of that one hlghly experlenced person. Thus at
project completion, there were four three-person and one one-person non-
Cleanroom teams. Although team ‘e’ wrote over 1300 source lines, thls highly
experlenced person did not do as well as the other teams In some respects. Thls é

]

Is consistent with another study In which teams applylng a "*disclpllned method-

ology" In development outperformed individuals [Basill & Relter 81]. Flgure 32
contalns the significance levels for the above results when team 'e,” when teams
‘"H" and 'I,” and when teams 'e,” 'H,' and 'T" are removed from the analysls. Re-

moving teams 'H' and 'I' has Iittle effect on the significance levels, while the re-

moval of team ‘e’ causes a decrease 1n all of the slgnlficance levels except for ex- T4
ecutable statements, software sclence effort, cyclomatlc complexity, syntactlc

y
complexlty, connect-tlme, and cpu-time. . q




S B S A Sl A Al S Rad i A Sl Al dnd Sl an® Ml gl &l Sl Ak Aadi N SEA L NGRS s - AN EF S ot e S e i i gt a0 P Ards ol A Sand aeag g

Figure 32. Summary of measure averages and signiticance levels.
Measure Average Mann-Whitney
significance levels
Clean- Non- All With- With- With-
room Clean- Teams out out out
Teams room Team Teams Teams
Teams e H.1 e H.I
Source lines 1320.0 1491.2 .196 .240 .153 198
Executable stmts 604.1 625.4 .500 .286 442 .367
#Procedures &
functions 36.5 40.0 .357 .500 .330 .500
%zImplementation
completeness 82.5 60.0 .088 197 .093 .196
%Successful tests (w/o
duplicate failures) 92.5 80.8 055 .128 .053 .116
%Successful tests (w/
duplicate failures) 78.7 59.2 134 285 151 .304
#Comments 194.9 122.2 .089 .102 .190 198
Syntactic complexity/
executable stmts 1.3 1.6 079 179 .082 173
Software Science E 6728.6e3 7355.4e3 451 .240 442 248
Cyclomatic complexity 196.8 212.2 250 .198 255 248
Sy¥ntactic complexity 917.5 1017.0 .500 286 .500 .305
#Global data itemns 37.6 24.2 071 .129 .053 117
%% Assignment stmts 34.2 26.6 056 .129 .040 087
Off-line effectiveness 3.2 2.5 065 065 .098 .098
Connect-time (hr.) 41.0 71.3 089 .012 121 021
Cpu-time (min.) T1.7 136.1 110 .017 .072 .009
#Deliveries 4.1 2.6 006 015 .010 022
.4
4.2.4. Conclusions - :

Thls paper descrlbes "“Cleanroom’™ software development - an approach in-
tended to produce hlghly rellable software by lntegrating formal methods for

specifizcatlon and deslgn, complete off-line development. and statistlically bhased 'fj

testing. The goal structure, experlmental approach. data analysls, and conclu-

slons are presented for a replicated-project study examining the Cleanrcom ap-

proach. This 13 the first [ovestigation Known to the authors that applied Clean-

rocnn o and charncrorized tis effeot relative to a more traditional Jdevelopment ap-

109 (Y]

PN N - . PR TR ] - - .
N « . . R - P S - - . - -~ ~ - - . .~ . . - et S - :
PP S P S P WA W D T WP v i v P S U P, GRS, S P T Dt 0 U S-S Tl Y U Sl b Yl Y S0P |

R I PN




proach.

The data analysls presented and the testimony provided by the developers
suggest that the majlor results of thls study are 1) most developers were able to
apply the technliques of Cleanroom effectively; 2) the Cleanroom teams’ pro-
ducts met system requirements more completely and had a hlgher percentage of
successful test cases; 3) the source code developed using Cleanroom had more
comments and less dense complexity; 4) the use of Cleanroom successfully
modified aspects of development style; and 5) most Cleanroom developers ndl-

cated they would use the approach agaln.

It seems that the ldeas In Cleanroom help attaln the goals of produclng
high quallty software and lncreasing the disclpline In the software development
process. The complete separation of development from testing appears to cause
a modification 1n the developers’ behavior, resulting In Increased process control
and In more effective use of formal methods for software specificatlon, design,
off-llne review, and verlficatlon. It seems that system modlificatlon and malnte-
nance would be more easlly done on a product developed In the Cleanroom
method, because of the product’'s thoroughly concelved design and higher reada-
bility. Thus, achleving hlgh requirement conformance and hizh operational rell- C 3
ablllty coupled with low malntenance costs would help reduce overall costs,

satlsfy the user communlty, and support a long product {ifetlme.

This emplrical study !s Intended to advance the understanding of the reia-
tlonship between Introducing dlscipline lnto the development process (as In

Cleanroom) and several aspects ¢f product quallty: conformance wlth requlre- .:}'

110

e e L e, T
T R 2 PR S S s




adS dasdasndatiad’nd ad L had ad e sV VLR L RELEY BT ES
A

ments, hlgh operatlonal rellabillty, and easlly modifiable source code. The
results glven were calculated from a set of teams applying Cleanroom develop-
ment on a relatively small proJect — the direct extrapolation of the findings to

other projects and development environments Is not implied. Valuable Insights,

R AAASARA T ur IRt T

ST

however, have been galned from the analysis.

~. - —~ v
.o e o

v
-.*
A
.
S
B
-
l"
I.'
-“
|
-
-.‘
-
"o
I--
.
L)
111
B e e PP AP e o e T e e T T L . L. - R
- Cele e tala "alla s de ran s PRI S AL WIS DRE I T DUE DR WU I 1 TP I 4 - N Lt aoa e Ty




2

!7"‘".-‘:‘.":‘;—‘_-‘ DRaAN M MG A Sl el v e ) N S S N Wb e e st e b SRa SR A N AN A4 IR R A AN A b I el A s e

4.3. Characteristic Metric Set Study

Several metrics have been proposed to predict product cost/quality and to
capture distinct project aspects [McCabe 76, Halstead 77, Chen 78, Gaflney &
Heller 80, Behrens 83]. The effectiveness of the measures In capturlng what Is
Intended, however, has depended on the particular environment examined
[Walston & Fellx 77, Curtls, Sheppard & Mlllilman 79, Feuer & Fowlkes 79,
Baslll 80, Balley & Baslll 81, Boehm 81, Brooks 81, Zolnowsk! & Slmmons 81,
Vosburgh et al. 84]. A partlcular software metric that has been useful to
characterlze, evaluate, or predlct aspects of software development Iln one en-
vironment may have limlted usefulness elsewhere. The differlng cost/quality
goals among environments and the dlversity In methodology, software type, etc.
contribute to the Inconsistent performance of metrics. Thus, 1t Is lnappropriate
to attempt to select a set of software metrics that have unlversal effectlveness
across all software environments. The selectlon of a set of metrics appropriate
for a partlcular environment must consider Its individual features; that ls, a

metric set must be customlzed to a speclfic environment.

This study develops an approach for customlzing to an environment 3a
characteristlc set of cost and quallty measures. The approach then Is applled In
a software productlon environment. Thls sectlon describes the concept of a
character!stic software metrlc set. Investigatlon goals, emplrical study, and data

analysls.




4.3.1. Characteristic Software Metric Sets

The successful management of software projects requlres a dlverse range of
capabllitles, Includlng monltoring and controlllng the evolving software system
and forecasting the outcome of the development. Technlques that assist in
these management functlons may lead to more successful projects, and possibly
hlgher product requirement conformance and operational rellability. The ldea
of a characteristic software metric set supports several aspects of software

management.

A characteristlc software metrlc set 1s a conclse collectlon of measures that
capture distinct factors In a software development/modificatlon environment. A
characteristlc metric set can be thought of as a vector of measures that
represents dlfferent areas of Importance In an environment. Slnce both
cost/quallty goals and production environments differ, the particular factors
that are captured by the metrlcs In the set wlll differ across environments. The

calculatlon of a characteristic metric set should be based on the particular cost

.and quallty goals In an environment, and reflect the Inherent differences of the

environment from others.

A characteristlc metric set may be used to 1) characterize an environment,
2) compare an environment with others, 3) monltor current project status. or 4)
forecast project outcome relative to past projects, when metrics In the set are
avallable early in development. Once the dlstlnct factors In an environment's
set are determlned, the set then characterizes what aspects are !mportant in the

environment. Comparing the characteristlc set of factors In one environment

113

Seoaft atasniarn MC AR/ ArR ARt St e e ettt et Sl A A e At S A e A AR A b Al S

D N e T N PO w0 s e e e
OS5 TS T PP N SAPSIRIPE WS T W LA LIPS WL S W YR L 1P . WEAE WA YR VIS WA DA Jiy Wl S SR W iy A W G i S S AP o i



A et it et A AN e SE s SR IR AL SN otf N

with the sets of other environments provides a format to distlngulsh and con-
trast among them. WIithln an Indlvidual environment, the actual values of the
metrics in the set characterlze a particular project or project subsystem. The
change 1n the metrlic values durlng a prolect can be used to monltor projlect
status and its change over tlme. The characteristic set In conjJunction with hls-
torical data can be used to forecast the outcome of the current project relatlve

to past project performance.

4.3.1.1. Investigation Goals

The goals for thls study are threefold. I.) Develop an approach for custom-

1zlng a set of measures to partlcular cost/quallty goals in a speclfic environment.

II.) Apply the approach to calculate the characteristic set for the NASA/SEL A

a1

environment. III.) Examlne the usabllity of the approach as a management tool
for predlctlng outcome of system  parts. An appllcatlon of the
goal/question/metric paradlgm [Baslll & Selby 84, Baslll & Welss 84] leads to

the framework of goals and questlons for thls study appearing In Flgure 33.

Figure 38. Framework of goals and questions for characteristic set study.

I. Develop an approach for customlzing a set of measures to partlicular
cost/quallty goals In a partlcular environment.

A. Is the approach sensitive to different cost and quallty goals?

B. Does the approach capture the aspects that dlstingulsh a given environ-
ment from others?

II. Calculate the charactertstic set for the NASA/SEL environment.



T

A. In the NASA/SEL environment of projects and programmers, which dls-
tinct factors are Important?

) 1. What is the ordering of factors that reflects their Importance in the
% environment?

2. How many distinct factors are there?
B. What metrics are appropriate for the varlous factors 1n the set?

II. Examline the usabllity of the approach as a management tool for predicting
outcome of system parts.

A. In the NASA/SEL environment of prolects and programmers, does
determlinlng a characteristlc metric set and using hlstorical data en-
able one to tdentify which modules wlll have Interesting attrlbutes,
such as high total development effort?

B. What are the best single ldentiflers of Interesting modules when the
cost/quallty aspect consldered changes?

4.3.2. Empirical Study

This sectlon describes the SEL environment examlned and the scheme for

data collectlon.

4.3.2.1. SEL Environment

— The Software Englneering Laboratory (SEL) [Baslll et al. 77, Baslll & Zel-

kKowitz 7S, Card et al. 82, SEL 82] 1s a Jolnt venture between the Unlversity of

Maryland, NASA/Goddard Space Flight Center, and Computer Sclences Cor-
poration. The purpose of the SEL has been to provide an experlmental data-
base for examlinlng relatlonships among the factors that affect the software de-
N velopment process and the dellvered product. The software comprising the da-

tabase 1s ground support software for sateilltes. The six svstems analyzed In

115




RREERR R

)

AR |

this study conslsted of 51,000 to 112,000 llnes of FORTRAN source code, and
took between 6900 and 22,300 man-hours to develop over a perlod of 9 to 21
months. There are from 200 to 800 modules (e.g., subroutines) In each system
and the staff size ranges from 8 to 23 people per projlect, Including the support
personnel. Anywhere from 10 to 61 percent of the source code s reused or

modlified from previous projects.

4.3.2.2. Effort, Change, and Fault Data

The data discussed In thls study are extracted from several sources.
Among the data analyzed are the effort to deslgn, code, and test the varlous
modules of the systems as well as the changes and faults that occurred durlng
thelr development. Effort data were obtalned from a collectlon form that Is
fllled out weekly by all programmers on the project. They report the time they
spent on each module in the system partitloned Ilnto the phases of deslgn, code,
and test, as well as any other time they spend on work related to the project,
e.g., documentatlon, meetings, etc. A module Is defilned as any named object In
the system; that 1s, a module Is elther a maln procedure, block data, subroutine
or functlon. The faults and changes are reported on another data collectlon
form that !s completed by a programmer each time a change 1s made to the sys-
tem. A statlc code analysis program called SAP [Decker & Taylor 82| automatl-

cally computed several of the statlc metrics examlined In thls analysls.

116




o IR R AL S E Sl Dbt At Ak Sadt

4.3.3. Data Analysis

The following sections present the analysis and results from thls study bro-

ken down by the goal areas outllned earller.

4.3.3.1. Approach for Set Calculation -

A proposed approach for calculating a characteristic set consists of three
steps: 1) formulate the goals and questlons that represent cost/quallty factors ln

an environment; 2) list all measures that capture informatlon relating to the -j.‘

goals; and 3) condense measures Into a set capturlng distinct factors. Thls ap-
proach satisfles the two Key aspects of customlizing a characteristlc metrlc set to
an environment: sensitlvity to the cost/quallty goals of Importance In the en-

vironment, and capturing the features that glve the environment 1ts identity.

The first step 1s to generate a goal and questlon framework for the environ-
ment on which to base the generatlon of all potential metrlcs. After the goals
and questions have been specifled for an environment, all possible metrics are
listed that represent relevant information. These first two steps are an appllca-

tlon of the goal/ questlon/ metric paradigm [Baslll & \Velss 84, Baslll & Selby

84]. Since a software environment 1s In some sense deflned by the projects It
develops, applylng the metrics llsted to those projects reflects an environment's
distlngulshing features. The third step s to condense the collectlon of measures

Into a characteristlc set. Factor analysls may be applled to accompllsh this

[N
v
’ .
A
).
s
b
b
v,
.
V.
b
v,

step. Thls data reductlon task actually groups the metrles listed according to

r
-.'_- how they relate to the distlnct factors In an environment. Approprlate metrics

] 117

b k-'.
g - L T e N '_‘.-, "_.“.'A.'_ - Tt '.“\.' S - - . L e UL LR .'“». LS} S - .
PIPIFAFIIIS SFIF 20 DP ARSI SAIRES SRS AR NI 35 S GO R R I S N g U IS gy Wi RS




that relate to each of the factors can then be selected based on some criterla,

such as ease of calculatlon or phase avallabllity.

4.3.3.1.1. An Alternate Approach

An alternate approach to determining a small set of characteristic measures
was examined In [Elshoff 84]. In thls approach, twenty candldate complexity
measures were calculated on 585 PL/I procedures. The name of each procedure
was put Into a large ‘‘complexity pot'’ once for each tlme the procedure ap-
peared In the top declle of a candldate complexlty measure. Slnce there were

twenty candidate measures, the name of a glven procedure could then appear

up to twenty tlmes In the pot. The procedures ldentified by a slngle measure
were then compared with those 1In the total pot. For each appearance of a pro-
- cedure name !n the total pot, a candidate measure was awarded one polnt If
that name was In the measure's top declle. The candldate complexity measure
that scored the highest would be selected for the characteristlc set. All oc-
currences of procedure names were then removed from the pot that appeared In

the top declle of the first measure selected. The scores for the measures were

then recalculated based on the remalnlng procedures, and another measure

would then be selected, continulng until no procedures remalned In the pct.

This alternate approach suffers because of the blased technlque used to
select measures In the characterlstle set, and a troublesome fundamental as-
sumption In the calculation. Including a large number of highly dependent pro-

zram measures in the collection examlined fe.g., the software "quanrtity™ Zroup




SR B A AR R et I A A% o SA SO SO AR aas AR AR e S pTT——" I S Sl e M Tl G S Ao B man o an oo >
B I [ N F A . R R A - A L . .

e W VORIV LY LN TN

"
:

4
hY

¥
\‘
3
-

of executable statements, length, volume, vocabulary, ...} lncreased dlspropor-
tlonately the number of appearances of routines commonly selected by that
group In the pot of ‘‘complex’ programs. It 1s therefore no surprise that the
measure that selected the greatest percentage of the appearances In the pot Is
one member of the *‘quantity’ group (length). In each of the twenty program
measures examlined, the top decile of programs was chosen as the most complex
according to that measure. Thlis declsion reiled on the Impllclt assumption that
software complexity Is a monotonically Increasing function of each of the meas-

ures, which Is possibly troublesome.

The approach presented here bases the selectlon of a characterlstic set of
measures on aspects of cost and quality In an environment. The use of 1;1eas-
ures In the characteristic set to ldentify modules with particular attributes, such
as those of high *‘complexity’ as was done In [Elshoff 84], Is discussed In "'Use

as a Management Tool.”

4.3.3.2. Application in the SEL Environment

In the appllcation of the approach In the NASA/SEL environment, there

were two major reasons to use Just slx recent prolects. Flirst, changes and !m-

F provements In development technologles and personnel tend to be retlected in
- ‘ the projects developed (as they are Intended to be). Therefore, the considera-
.,',-_- tion of prolects not recently completed would not be representative of the
'
N
f.. current environment. Second, several development environments do net have a
’ .
L long hlstory of data collectlon. Discussing an appreach thar ceqnteed o jarze

119

N T T e e N e e T Y T e T e e R e e NN
[ S RSNV SN AL . . LIPS PR P T S, PR ) Tatatacls Tt

il Ol W R A AP N L B N R T




........

project database would have little utllity for them.

Three goal areas were deflned for the SEL environment. The first goal area
was to analyze the system development effort. An example question under this
goal Is **What are the attributes of modules that result In high development
effort?”. The second goal area was to analyze the system modificatlons. An ex-
ample question here Is **What are the attributes of modules that will be difficult
to change?”. Analyzing the system faults was the third goal area. An example
question would be ‘*What are the attributes of modules that wlill be fault-
prone?”. The generated llst of measures based on these three goal areas appears
in Flgure 34; a total of 85 measures was examined. The measures are grouped
according to the general areas of slze/complexity [McCabe 78], eflort,
faults/changes, and software sclence [Halstead 77]. The set notatlon In the
figure slgnlfles the normallzatlon of one metric by another, e.g., amount of
destgn effort was consldered alone and normallzed by the amount of code effort,
testing eflort, and overhead effort. In additlon to belng examlned alone, the
effort and faults/changes measures were In general normallzed over the

slze/complexity measures.




A 2 Aafhte St 2 Dt A S S i A il A St A i A A B A e A A I A B A S - SR Gl A 0 A A A A A A th 0t Jhe S a4 A 8 o 0 o' abs 4

- .’~"
PRI WP

Flgure 34. Llst of measures examlned In the SEL environment.
Size/Complexity Area
source [lnes (SRC)
executable statements (XQT)
comments
comments/SRC
XQT/(SRC-comments)
Cyclomatlc_complexity
Cyclomatle_complexity_2

calls

{mlomaui__@mylexlty. Cyclomatlcﬁcomplexlty_fz} over {SRC. XQT} J
Effort Area *
total_effort )
design_effort J
code_effort -: T:
testing_eflort
{destgn_effort} over {code_eflort, testing_effort, overhead_effort} d

{code_effort} over {testing_effort, overhead_effort}
{testing_eflort} over {overhead_eflort}
{design_effort, code_eflort, testing_effort} over {total_effort, calls, n,’}
{total_eflort} over {SRC, SRC-comments. XQT, calls, 7.}
Faults/Changes Area
verslon
total_changes
welghted_changes
totai_faults
welghted_faults
itocal faults. welzhtedJau]ts} over {SRC, XQT}

Software Sclence 1:—_',':
n Mz omg N1 ]
N2/n, N N- v Vi L é
L~ 1/L 1/L"° E E- E°° Ex :

B~ lambda E/SRC

LA L
Ly
[T

From the six projects, this analysls focuses on 652 newly developed

modules with complete data for the measures listed In Flgure 34. The use of
factor analysls lsolated the ser of six distinet factors Including, in order of
overall Importance. {slze. effort. n,. fault denslty, code and test effort,

=changes). The rzg' metric 1s the number of [/O parameters In a2 module. Some

121

~ -

Sl . w.

.........
W T e

- - et . g . -

P - . . LRI . B - J - - .
. . P N I Y U . R T
IS I IRl U T D B SR i G P IR Y S U Y IR BT U T 0N RS S IR T

1
]
-

PSR S S-S S




AR LA Al S A o A i R JR AR A A A

appropriate measures that related well to each of the factors In the set were a)
slze — source llnes, executable statements, and 7, (the number of unlque opera-
tors); b) effort - deslgn effort, 7., and testlng effort / 7, ¢) n," — n,; d) fault
density — #faults / executable statement; e) code and test effort - code effort,
code effort / #subroutlne calls; and f) #changes — number of module versions.
Thus, a feaslble characteristic metric set for the SEL environment s {source
llnes, design effort, number of I/O parameters, fault correction effort per execut-

able statement, code effort, number of verslons}.

4.3.3.3. Use as a Management Tool

Although a characteristlc set has the several uses outllned earller, this
study focuses on the use of measures In the set to forecast the outcome of
modules in projects. Several studles have polnted to the unsatilsfactory use of
metrics as dlrect predlctors of software cost and quallty [Hamer & Frewin 82
Baslll, Selby & Phillips 83; Shen, Conte & Dunsmore 83]. Thls Inadequacy
motlvates the use of software metrics from a new perspective — the examlnation
of how well the metrics In the characteristic set can ldentify system parts (or
whole systems) resultlng In high or low cost/quallty. System parts with in-
teresting cost or quality attributes Include those with high/low develcpment
effort, high/low modlfication effort, or high/low fault correction effort.

An approach for using metrles vo ldentlfy system parts having Interesting
attributes 1s as follows. Flrst, select some Interesting cost or aquallty aspect of a

svstem part, such as the total development efiort for 2 moduie. Then, choose 4

C et e " -

IR i N R S S .‘-.’-.'-r"-" LR e Y N e T e T T T T T T T T T T s e T T T e e e T
AP S SN JRF PR SR PC Sy NE DAL ¥ AataSatatatatlaaldatlar ot ecia’atale atalialalaldalaialdalaldaiaaliaiatia clalafaSatakaltotaStasoy



PRI I I

AN A S 4?1 " fa i A% fte Ate e - by

window of modules that Is useful to 1dentify, such as those modules that wlll be
in a project’'s upper quartlle of development effort. Next, determlne the ranges
of metric values that contalned modules from past projects endlng up in the
upper quartlle of development effort. From the calculation of the sensitive
metric ranges and the use of conditlonal probabllitles from hlstorical data, thls

approach Is Intended to be able to ldent!ify Interesting modules In the system.

4.3.3.3.1. Conditional Probabilities from Historical Data

The condltional probabllitles displayed In Flgure 35 were calculated from
six SEL projects, and are Interpreted as follows. The table Is dlvided Into three
sectlons, corresponding to the three SEL goal areas dlscussed above. There Is a
table sectlon for each dependent varlable: total module development effort, total
effort for module modiflcatlon, and total effort for fault correctlon In a module.
The characteristic set of slx metrics that represents the dlfferent environmental
factors Is llsted In each sectlon of the table. Conslder the sectlon on total
module development effort. The entrles In the table are the probabllity that a
module’s eventual outcome will be in the upper quartlle of total module devel-
opment effort, glven that a module Is currently !n quartlle Qj of metric M.
For example. glven that a module s In the upper quartlle of code effort, 1t has a
probabllity of .74 of ending up In the upper quartlie of total module develop-
ment eflort. A module In the third quartile of source lines has a probabllity of
Just 14 of ending up In the upper quartlle of toral development etfort. The in-

rerpretation 1s the same for the other dependent variables of maodile

- L e, - A . 5 . - e . L . RIS Ce e o .-
AP S AP LIPS G LS WP W A e .t U PG S S P UL T O S BN G G L P G U AP S P

et
MO I



A A S At A APl S e S YeAe Ak J0Ae Jaie Rt o1

modlficatlon effort and module fault correction effort. Flgure 38 1s analogous to
Flgure 35, except that the entrles are the conditional probabllities that the
eventual outcome will be In the lower (Instead of the upper) quartlle of the
respectlve dependent variable. For example, a module In the lower quartlle of
number of versions has a probabllity of .50 of ending up In the lower quartile of

total module development effort.

124

- W e e e e T L . . R
O T .
P /P A SO I R Jal?, O TS S I R . U TP I Sl i S Y ST G Y B G 1 Y S VUG U U P P e PP PR S SN S SR G-I R Y PN ¥ |




...........

Flgure 35. Condltlonal probabllitles based on SEL data:
upper quartiles of dependent varlables.
Quartlle of Metrlc M; =
Dependent Upper Second Third Lower Characteristic Set f::-
Varlable Metrlc M; S
Module \_.‘
Development
Effort
74 .18 .04 .04 code effort
.56 .18 .13 .13 design effort
.51 .28 .14 .09 source lines
.48 .24 17 11 ng
44 37 .13 .08 version
41 .28 .15 .18 fault correctlon
effort / XQT
Module
Modlfication
Effort
.85 .18 .08 .09 fault correctlon
effort / XQT
52 .33 .11 .04 version
.50 .27 A7 .08 code effort
.50 .28 .13 .09 source llnes
A5 .24 .23 .08 ne
.41 .25 18 17 destgn effort
Module
Fault
Correctlon
Effort
.81 .19 .00 .00 fault correction
effort / XQT
.50 .35 A2 .03 verslon
48 .29 .15 .08 code effort
42 .33 .14 1 source lines
A2 .28 .19 11 ns
.38 .25 .20 .19 deslzgn effort
125




n
P
: Filgure 38. Conditlonal probabllitles based on SEL data: !
- lower quartiles of dependent varlables. .
;_' Quartlle of Metric M;
. p Dependent Upper | Second | Third | Lower | Characterlstic Set
‘< Variable Metric M,
- Module
" Development
' Effort
.00 .00 .23 77 code effort K
.10 12 24 .54 source llnes ‘
.08 .14 .30 .50 verslon :
.09 .21 .25 45 ng N
.02 .23 .37 .38 deslgn effort
12 .25 .32 31 fault correction -
effort / XQT :
Module .
Modiflcatlon N
Effort i
.09 .15 .28 .48 verslon B
.01 .13 .43 .43 fault correctlon g
effort / XQT .
14 .19 .25 42 u 7
11 .18 .30 41 source lines -
11 .18 .34 37 code effort -
.18 .28 .27 .27 design effort }E
Module :‘;
Fault :
Correctlon
Effort
.00 .00 .50 .50 fault correctlon
effort / XQT
.18 .18 27 .37 version
21 .19 .29 31 source llnes
.18 24 27 .31 code effort
.20 24 .25 .31 ns
.18 .25 29 .28 deslgn effort
4.3.3.3.2. Data Interpretation

The Informatlon In these tables could be used to forecast the outcome of

"
K
N

modules In a system. At the end of the deslgn phase, the 773' metric and the

126

l!'. e T e
LY I

. PR ) R o . N S TR . . e LT
R I ) AP Y Sy SR - P PO P g g L e s 2 PRI - LY S GGG Y P P S IR




NESYLENC SR AL i o C . AL ol siak il SNt e bl adi ahe w00 ghaturtir—aig S MaE JIEC AN obi" aibe LD’ i afer- oin * ol NS g A B ~ Jn v liate i e Ji= s s i e e e i 4t

amount of effort spent In design are known. The modules In the upper quartlle
of deslgn effort should be ldentifled by a project manager because these modules
have a probablllty of .56 of ending up In the upper quartlle of total develop-
ment effort. That Is, In this environment the modules In the upper quartile of
deslgn effort are more than twice (=.56/.25) as llkely than by chance to be the
most expensive to develop overall; these modules are approximately 28

==.56/.02) times more llkely to be In the upper quartlle of total development

effort than to be In the lower quartlle of total development effort. Modules In
the upper quartlle of the 772’ metric are almost twice as llkely than by chance to

require the most effort to develop, modify, and correct. Other observatlons In-

AL Yl"'_" PR Rt e

clude 1) 1t 1s easlest to ldentify those modules that will have high development

effort; 2) it Is most difficult to ldentify those modules that will requlre little
fault correctlon effort; and 3) the metrics of deslgn effort and ng’ are reasonably
simllar 1n forecasting ablility, except that ng' Is superior In 1dentifylng modules

that will requlre little modification effort.

The two tables above help characterize the SEL development environment.
The total development effort for a module tends to be Indicated by the module's
coding effort — modules In the extreme quartlles of codling effort are three tlmes
more likely than by chance to be In the correspondlng extreme quartlles of total
development effort. Since the programmers in the SEL are qulte experienced In

the application and with approprlate design approa~hes. the domlnance of cod-

ing effort seems reasonable. In other environments. the amount of deslgn effort

mlght better Indlcate the total development effort required. Other observitions

R
Y AP P VN S

:

[
(&)
-1

S5} NS




Mfala et Son e Bak Sat Bt Sall Sed Sl Bl Acan Aol

2%

Rk

Include 1) high density of fault correctlon effort (fault correction effort per exe-
cutable statement) Indlcates high total modification effort and hlgh total fault
correction effort; and 2) an extreme (high or low) number of program verslons

reflects a corresponding amount of modification effort and of correction effort.

Ideally, the metrics In the characteristic set would all be avallable early In
development and have strong relatlonshlps with the dependent varlables of In-
terest. Some measures, such fault correction effort per executable statement,
have limited usefulness as a forecaster because of not belng avallable untll late
In project development. An assumptlon ls needed In order to use condltlonal
probabllitles from past projects to forecast the outcome of modules from a
current project. The assumptlon Is that the relatlonshlp between a module’s
metric value (at a polnt In time) and Its eventual outcome Is the same as the re-
lationship between the metric values from past proJe'cts' modules {at a
corresponding point 1n tlme) and thelr eventual outcome. When using data
based on recent projects that were simllar to the current one, thls assumptlon Is
rez_:sonable. Note that the examples and conditlonal probabilitles presented are
from a partlcular environment, project data from other environments may

d!ffer.

Using a characteristlc metric set wlith condltlonal probabliltles from past
prolects enables the monltoring of a small set of customlzed measures to fore-
cast the outcome of the current project. A characteristlc set Is usable as a

management tool as soon as the metrles In the set are avallable.

128

- - . - - - . . . - - Wt et et . . - Ve T ot et T e e a St . A
ST IPAT AP S ST 2 SR AR RIS PR S0 IS PR N SRS DORE. W B | R BT SRR Sy PSP U G- I




—n v mw T N R e w—————
A A At N

S

4.3.4. Conclusions

A characteristic software metric set Is Intended to help support the effectlve
management of software development and modificatlon. The approach exam-
ined for bullding a characteristic metric set 1s adaptable to different cost/quallty
goals and to different environments. The calculatlon and use of the set could be
coupled to an automated prolect monltor and database. The major results of
this study are 1) an approach has been described for customlizing a characteris-
tic software metric set to an environment; 2) the application of the approach to
the SEL productlon environment ylelded the characteristic software metric set
{source lines, deslgn effort, number of 1/O parameters, fault correctlon effort per
executable statement, code effort, number of versions}; and 3) the use of a
characteristic set with condltlonal probabllitles from hlstorlical data can asslst In
proJect management by forecasting the outcome of system parts. Thls work Is
Intended to advance the understanding of the use of various metrics to charac-

terlze and predlict aspects of software cost and quallty.

129




5. Conclusions

The understanding of the technologles that contrlbute to quality In the
software development process and the flnal product s fundamental to the ad-
vancement of the software fleld. This dissertation presents three studles that
evaluate factors In key areas of software development, malntenance, and
management: testing strategles, Cleanroom software development, and environ-

mental metrics.

In each of the studles, a seven-step approach for quantitatlvely evaluating
software technologles couples software methodology evaluation with software

measurement. In the approach, goal/question frameworks of a technology's po-

1
tentlal effect on software cost and quallty are coupled with measurable attrl- N
4
N
butes and appropriate quantitatlve analysls methods. The seven-step analysis q

methodology provides a paradlgm for quantitatively assessing the effect of soft-

ware technologles on software development and malntenance.

The goal structure, data analysls, and conclusions were presented for three
studles: a blocked subject-proJect study comparing software testing strategles, a
replicated prolect study characterizing the effect of using the Cleanroom soft-
ware development approach, and a multl-prolect varlation study to determlne a
characteristlic set of software cost and quallty metrics. The different studles
were chosen to satisfy several criterla: scope of evaluation, representative

domaln sampilng, quansitatlve anaiyvsls method, area ol assessment, scope of

"'.". Ny

technolegy. and potentlal beneflt. The three studles are the followlng. 1) Soft-

e e

130

A |

‘. _‘_ .',".‘



A R T rrrereres I e e B i Bk ok B S S e e gt MO S Al S Son Bie S s e 2al v e m S

ware Testlng Strategles: A 74-subject study, Including 32 professional program-
mers and 42 advanced university students, compared code reading, functlonal
testing, and structural testlng In a fractlonal factortal deslgn. 2) Cleanroom
Software Development: Fifteen three-person veams separately bullt a 1200-llne
message system to compare Cleanroom software development (in which software
1s developed completely off-llne) with a more tradltlonal approach. 3) Charac-
teristic Software Metric Sets: In the NASA S.E.L. production environment, a
' study of 85 candldate product and process measures of 852 modules from six
(51,000 - 112,000 llne) proJects ylelded a characterlstlc set of software

cost/quallty metrics.

These emplrical studles are Intended to demonstrate an analysls methodolo-
gy In a varlety of problem domalns and to advance the understanding of 1) the
contributlon of various software testing strategles to the software development
process and to one another; 2) the relatlonship between Introducing discipline
Into the development process and several aspects of product quallty (requlre-
ment conformance, operatlonal rellabllity, and modiflable source code); and 3)
the use of software metrics to characterize software environments and to predict

prolect outcome.

5.1. Overall Results from the Software Technology Evaluations

The major results from the software technology evaluations are the follow-
Ing. 1) Wlth the professionals programmers, code readlng detected more soft-

ware faults and had a hlgher fault detectlon rate than did functlonal or strue-

131

Cada i atelatatatatatatataTa e tata et Lo el e



tural testing, whlle functlonal testing detected more faults than did structural

testing, but functional and structural testing were not different in fault detec-
tlon rate. 2) Wlith the advanced students, the three testing technlques were not
different In the number of faults detected or In the fault detectlon rate, except
that structural testlng detected fewer faults than dld the others In one study
phase. 3) Code readlng detected more Interface faults and functlonal testing
detected more control faults than dld the other methods. 4) Most developers
-usilng the Cleanroom software development approach were able to bulld systems
completely off-lilne. 5) The Cleanroom teams' products met system requlrements
more completely and succeeded on more operatlonal test cases than dld those
developed with a traditlonal approach. 8) An approach described for caiculat-
Ing a characteristlc metric set ylelded the set for the NASA S.E.L. environment
{source llnes, deslgn effort, number of Input/output parameters. fault correction

effort per executable statement, code effort, number of versions}.

5.2. Problem Areas

The use of the quantitative approach for evaluatiag software technologles
ldentifled several problem areas In data collectlon and analysls In software
research and management, suggesting future research areas. 1) The process of
formulating Intultlve problems Into precisely stated goals Is a nontrivial task.
The Inherent difficulty in goal writlng reflects the uncertalnlty of all aspects of
quallty In the software product and development process. 2) Numerous soft-

ware metrics have been proposed to measure distlnct attributes of =~fiware,

132




DA | Tt e

-

These metrics need to be valldated to determlne whether they actually capture
what 1s Intended. 3) The process of collecting accurate data Is a continulng
challenge. Whlle there Is Increasing potentlal In automated collectlon schemes,
the more common data collectlon forms are subject to Incompleteness, Incon-
sistency, and human error. 4) WIith the growing number of controlled studles
done to determlne which factors contribute to software quallty, the selectlon of
samples (e.g., programmers, programs, ...) to analyze Is fundamental. In order
for tne results of these studles to apply to larger environments, representative
samples of sufficlent slze must be selected. 5) These controlled studles are ex-
penslve to conduct. Both lndustry and academla must help support these
efforts; e.g., academlé researchers using subjects from industry. 6) There seems
to be an Interdependency among several factors that contrlbute to product and
process quallty. The use of several technlques together may be effectlve as a
*critlcal mass', makling the isolation of thelr lndlvidual effects difficult. 7) The
methods of analysls must account for the high varlation iIn indlvidual perfor-
mance. WIlithout careful planning, this many-to-one dlfferential among humans
can talnt experlmental results. 8) Researchers have rarely been able to repro-
Jduce results across environments. In additlon to the lack of conslstent use of
measures, every software development or modiflcation environment seems to

differ.

133

« ... . » - - . ~ - - Y . . -~ . . Y
‘." TeTel e S oW TN ) c wm Vm . S C UL - o BRI LT " - . B -
. N TS AP IR N S T S TP IS Sul So BV, VAP G IR U U T Y WP dy S S S U Rt T T S o S L




5.3. Overall Conclusions

The quantitatlve approach for evaluating software technologles has been
applled I1n three analyses of factors coniributing to software quallty. The
overall concluslons from this work are the following. 1) The approach described
for quantitatively evaluating software technologles has been demonstrated and
effectlve In a varlety of probiem domalns. 2) The results from the testing stra-
tegy study suggest that code readlng by stepwlse abstractlon (a nonexecutlon-
based method) Is at least as effectlve as on-llne functlonal and structural testing
In terms of number and cost of faults observed. 3) The results from the Clean-
room study demonstrate the feasibllity of complege off-llne development (as in
Cleanroom) and suggest that such a development approach Is superlor to a more
traditional approach. 4) The results from the software metrlc study suggest
that a characteristic metric set can asslst In aspects of project management, 1n-
cluding the forecasting of effort for development, modlification, and fault correc-

tlon of modules based on hlstorical data.

[
o
[+
-

e ey N L

P PV VR P | Lot ala-ala p- g ac o= o P G W O WU T WY RO Y S e S AL a2 e a e o A PEUS VY VEVC RS R VO VG WU 8 VgV S v o«




r~

oy TUV) 3, ’ 4 ARt ey v

8. Appendices

8.1. Appendix A. Overview of Sampling and Statistical Test Applica-
tion

In the range of software analyses in the four-part classificatlon scheme
presented earller, there Is a relatlonshlp between the effectlveness of statlstical
methods (attalnable statistlcal significance) and the representatlveness of the
sampled observatlons to production-world sltuatlons. Because of thls observers
sometimes criticlze the concluslons of an analysls or express doubt as to how
well the results would extrapolate to environments different that the ones stu-
died. This happens even when the analysls presented was sound and statlstical-
Iy significant. Emphasls needs to be placed on two aspects of applylng statlstl-
cal tools In an analysls, observatlon sampling and statlstical test applicatlon.
When an experiment 1s run, a certaln sampling of data from some population Is
analyzed to achleve some resuit. After applylng a statistlcal test to attrlbutes

of the members of the sample, a set of concluslons Is derived.

The maljor conslderations when choosing a sampllng from a population are
how well the sampling represents the whole popilatlon and how large the sam-
pling should be. If a population is finite, the most representative sampling
would be to select the whole population. There could then be no argument that
the observations studled dld not represent the whole population. =Several In-
teresting populatlons, such as programimers or software syvstems, are inflnite so a

reasonable flnite sampllng must be chosen. Technlques used 1o effectlvelr

135

- I . Y . e s s alal alal A YA . T AT

3 e 1"s”
DN

'.?.‘: )

f
‘e

oo e
..,,’('-' .




BRSNS At A APl Sl A A N Rt e e S Aail A Al An i Sl i it At A A Aniadaffn i Sel Sa itk Sal Ak, Sl aila ety taly Saiesalie deks “Bile Sl Sl tadatiih, Sl “a "l - o)

choose thls sample are In statlstlcal sampling theory [Cochran 53]. The
stratificatlon of the population Is an important aspect of this process; that ls,

the identlficatlon of all the relevant aspects that differentiate among members of

the population. Thls set of aspects Is then distllled Into a pseudo-basis !® set,

and then observations are chosen along the range of each basls set component.

If statlstical results are generated from a filnite sampling of an Infinite popula-

_ tlon, the Issue of controversy is usually how well thls sampling corresponds to N

the Intended population. One component of the representatlveness of this set Is .1

» .
its slze.

In determlnlng the sample slze, both the achlevement of statistical

slgnlficance In the experimental deslgn and the economlc constraints need to be

considered. The cardlnallty of the basls set determines the number of factors
whose effect must be accounted for ln the experimental design. The effect of
these factors Is blocked out In the design, enabllng the Investigation to focus on
dlstlngmshlng between the particular treatments belng examlined [Box, Hunter,
& Hunter 78]. The declslon to choose an experlmental deslgn Is balanced
between one capable of blocking out these factors and the need to keep the
sample slze economlically feas!ble. The slze of the sample also effects the proba-

bllity of erroneous conclusions, referred to as Type [ and Type II errors [Slegel

55, pp. 8-11]. V7

. 1% The preflx pseudo Is used here slnce the basls set achleved is usually an
o approximatlon of a true basls set.

1 Type I error 1s rejecting the experlmental hypothesls when 1t s Indeed

trite. The probabllilty of Type I error Is the significance level, usually called al-




B T T T T o L O o N W T W W OV VO Ty YY)

When applylng a statistical test to a set of data, any assumptlons that the
test requlres must be verified. For example, assumptlions regarding the distribu-
tlon of values or thelr varlance commonly occur In parametric statlstics. Glven N
that a set of data meets the requlred assumptlons, the determination of the out-
come of the test Is Just mathematlcs; critlclzing thls aspect of experlmentatlon Is

unfounded. Note that dlfferent statlstical tests have thelr own characteristics,
such as In terms of the power or sensltivity of the test [Slegel 55, pp. 10-11]. 18
Glven that the assumptlons for two different tests are both met, one of the tests

may be more appropriate to be chosen on these or other grounds.

68.2. Appendix B. Programs Used in the Testing Strategy Comparis-

on

6.2.1. Appendix B.1. The Specifications for the Programs

Program 1

Glven an 1nput text of up to 80 characters conslsting of words separated by
blanks or new-llne characters, the program formats !t Into a llne-by-line form
such that 1) each output llne has a maximum of 30 characters, 2) a word in the
nput text Is placed on a single output llne, and 3) each output line !s fijled with

as many words as possible.

pha. Type II error Is not relecting the experimental hypothesis when it s {aize,
The probabllity of Type Il error 1s usually called heta.

“* The power of a test Is oene mlnus the probablllty of Type II error.




The 1nput text Is a stream of characters, where the characters are categor-
J' 1zed as elther break or nonbreak characters. A break character !s a blank, a

new-line character (&), or an end-of-text character (/). New-llne characters

13

have no speclal signlficance; they are treated as blanks by the program. The

P a 2
-8 0, A Yy

characters & and / should not appear In the output.

A word 1s deflned as a nonempty sequence of nonbreak characters. A break

“r e Ty ow 9

- 1s a sequence of one or more break characters and Is reduced to a single blank s

character or start of a new llne in the output.

- When the program 1s invoked, the user types the Input llne, followed by a
/ (end-of-text) and a carrlage return. The program then echos the text Input

and formats It on the termlnal.

&
b-‘.
-
=

If the Input text contalns a word that Is too long to flt on a slngle output -

llne, an error message 1s typed and the program terminates. If the end-of-text

-:: character 1s mlssing, an error message 1s Issued and the program awalts the In- -

put of properly termlnated llne of text.

Program 2

Glven ordered palrs (Xx,y) of elther positlve or negatlve Integers as Input,

the program plots them on a grid with a horlzontal x-axls and a vertlcal y-axls ' -
which are appropriately labeled. A plotted polnt on the grid should appear as
an asterlsk (). ;:

w

The vertical and horlzontal scallng 1s handled as follows. If the maximum -

absolute value of any y-value s less than or equal to twenty (20), the scale for

138

.- PR .- o . . T I . T R e U Y . N
La R P ittt i b ok abnd o inet atem e lobndelk el Bacm inltadddackada daliodnlcded cdoa el s ek




vy,

vertlcal spacing wlll be one llne per Integral unit (e.g., the polnt (3,8) should be
plotted on the sixth llne; two iines above the polnt (3,4)). Note that the origin
(point (0,0)) would correspond to an asterisk at the the Intersectlon of the axes
(the x-ax!s Is referred to as the Oth llne). If the maximum absolute value of any
x-value Is less than or equal to thlirty (30), the scale for horlzontal spaclng will
be one space per Integral unit (e.g., the polnt (4,5) should be plotted four spaces
to the right of the y-axls; two spaces to the right of (2,5)). However, if the max-
Imum absolute value of any y-value s greater than twenty (20), the scale for
vertical spacing wlll be one llne per every (max abs of yval)/20 rounded-up.
(e.g., If the maximum absolute value of any y-value to be plotted 1s 66, the
vertical llne spaclng will be a llne for every four (4) Integral unlts. In such a
data set, polnts wlth y-values greater than or equal to elght and less than
twelve will show up as asterisks In the second llne, polnts wlith y-values greater
than or equal to twelve and less than sixteen will show up as asterisks In the
third llne, etc. Continulng the example, the polnt (3,15) should be plotted on
the third llne; two lines above the polnt (3,5).) Horlzontal scallng 1s handled

analogously.

If two or more of the polnts to be plotted would show up as the same as-

terisk In the grid (itke the polnts (9,13) and (9,15) In the above example), a

number '2° (or whatever number Is approprlate) should be printed instead of the
asterisk. Polnts whose asterisks wlll lle on a axis or grid marker should show up

In place of the marker.




Program 3

A |lst 1s deflned to be an ordered collectlon of integer elements which may
have elements annexed and deleted at elther end, but not In the middle. The
operations that need to be avallable are ADDFIRST, ADDLAST,
DELETEFIRST, DELETELAST, FIRST, ISEMPTY, LISTLENGTH, RE-
VERSE, and NEWLIST. Each operatlon 1s described In detall below. The lists
are to contaln up to a maximum of five (3) elements. If an element 1s added to
the front of a ‘*‘full” list (one contalning flve elements already), the element at
the back of the list Is to be dlscarded. Elements to be added to the back of a
full llst are discarded. Requests to delete elements from empty lists result In an
empty list, and requests for the first element of an empty list results In zero (0)

belng returned. The detalled operation descriptions are as below:

ADDFIRST(LIST L, INTEGER I)

Returns the llst L with I as lts first element followed by all the elements of
+ L. If L Is “full” to begin wlth, L's last element s lost.
- - ADDLAST(LIST L, INTEGER I)
i Returns the list with all of the elements of L followed by I. If L 1s full to
begin with, L Is returned (l.e., I Is ignored).

DELETEFIRST(LIST L)
Returns the list contalnlng all but the first element of L. If L Is empty,
then an empty list 1s returned.

P
t
DELETELAST(LIST L)
L
5

Returns the llst contalning all but the last element of L. If L 1s empty,
then an empty list 1s returned.
FIRST(LIST L)
Returns the first element In L. If L 1s empty, then 1t returns zero (0).
ISEMPTY(LIST L)
Returns one (1) If L Is empty, zero (0) otherwlse,
LISTLENGTH(LIST L)
Returns the number of elements In L. An empty lIst has zero (0) elements.

NEWLIST(LIST L)
Returns an empty list.




RIS PSR T Sl N e Ate T e M a il ad

REVERSE(LIST L)
Returns a Ilst contalning the elements of L In reverse order.

Program 4
(Note that a ‘file’ Is the same thing as an IBM ‘dataset’.)

The program malntalns a database of blbllographlc references. It first
reads a master flle of current references, then reads a flle of reference updates,

i
merges the two, and produces an updated master flle and a cross reference table q
Y

of keywords.

The first Input flle, the master, contalns records of 74 characters with the

followlng format:

column comment

1- 3 ;each reference has a unlque reference key

4 - 14 author of publication

15 - 72 title of publlcation

73 - 74 year lssued

The key should be a three (3) character unique !dentifier consisting of letters
between A-Z. The next input file, the update flle, contalns records of 75 charac-
ters In length. The only dlfference from a master flle record Is that an update
record has elther an "A’ (capltal A meaning add) or & ‘R’ (caplital R meaning re-
place) In column 75. Both the master and update flles are expected to be al-
ready sorted alphabetlcally by reference key when read Into the program. Up-

date records wlith actlon replace are substituted for the matchlng keyv record In

141




the master flle. Records with action add are added to the master flle at the ap-

ASMARAE: L
A

. propriate locatlon so that the flle remalns sorted on the key fleld. For example, .':"
a valld update record to be read would be (lncluding a numbered llne Just for .’;
reference) ' ’5'. '

v,

! 123456789012345678901234567890123458789012345678901234567890123456789012345

BlTbaker an lntroduction to program testlng 83A
The program should produce two pleces of output. It should first print the L
sorted list of records In the up;iated master flle In the same format as the orlgl-

s nal master flle. It should then print a keyword cross reference llst. All words
greater than three characters In a publication’s title are keywords. These key- \
words are llsted alphabetlically followed by the key flelds from the applicable ;.
updated master flle entrles. For example, If the updated master flle contalned :
two records,

: ABCKeml t introduction to software testing 82 ':"
[IX]Jones the realltles of software management 81
then the keywords are Introductlon, testing, realltlies, software, and manage-
ment. The cross reference |lst should look like -f.}
Introductlon -1

ABC "
management *
o

DDX '

142




BN R T o

ALY

- o"
. %

realltles

DDX
software
ABC :

DDX

s testing :
y ae _,

Some possible error condltlons that could arlse and the subsequent actlons

Include the following. The master and update flles should be checked for se- :
- quence, and If a record out of sequence Is found, a message similar to 'key ABC
out of sequence’ should appear and the record should be discarded. If an up-
date record Indlcates replace and the matching key can not be found, a message
slmllar to ‘'update key ABC not found' should appear and the update record K

should be Ignored. If an update record indlcates add and a matchlng key is .

found, something llke 'key ABC already In flle’ should appear and the record

should be lgnored. (End of speclification.)

6.2.2. Appendix B.2. The Source Code for the Programs

Program 1

. 001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION '\MATCH'
002: C IT IS DESCRIBED THE FIRST TIME IT IS USED, AND ITS SOURCE CODE
003: C IS INCLUDED AT THE END FOR COMPLETENESS.
004: C
- 005 C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE
: A LEADING
006: C AND REQUIRED ' ' FOR CARRIAGE CONTROL

007
N 008: C VARIABLE USED IN FIRST. BUT NEEDS TO BE INITIALIZED
009: INTEGER MOREILIN

143

o N T RN AN R
MU PV PR L W R S R S R P G B



T T Ty Y T rT—— e aoe o

-
s

™
A
A 010: 4'\
) 011: C STORAGE USED BY GCHAR o
) 012: INTEGER BCOUNT "
, 013: CHARACTER=*1 GBUFER(80) = s
014: CHARACTER#80 GBUF »
015: C GBUFER AND GBUFSTR ARE EQUIVALENCED =
016: s
017: C STORAGE USED BY PCHAR iy
o18: INTEGER I "
019: CHARACTER=*1 OUTLIN(31)
020: C OUTLIN AND OUTLINST ARE EQUIVALENCED |
021: &
022: CHARACTER#*1 GCHAR %
023:
024: C CONSTANT USED THROUGHOUT THE PROGRAM -
025: CHARACTER=*1 EOTEXT, BLANK, LINEFD w7
028: INTEGER MAXPOS
027: e
; 028: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
029: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
030:
031: DATA EOTEXT, BLANK, LINEFD, MAXPOS / */’, ' ", '&’, 31 / .
032: -
033:
034: CALL FIRST
035: END " -
036: .
037:
038: SUBROUTINE FIRST B
039: INTEGER K, FILL, BUFPOS ot
040: CHARACTER=*1 CW o
041: CHARACTER=*1 BUFFER(31) Rk
042: -
043: INTEGER MOREIN, BCOUNT, I. MAXPOS e
044: CHARACTER=*1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
045: X GBUFER(80) hCA
048: CHARACTER#*80 GBUF D
047: A
048: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN, <
049: X EOTEXT, BLANK, LINEFD. GBUFER., GBUF o0
050:
' 051: BUFPOS = 0
. 052: FILL =0 .
033: CW ="’
054:
055: MOREIN =1 o
058: -
057: I=1 . —
058: K=1
059: DOWHILE (K .LE. MAXPOS)
060: OUTLIN(K) = "’
061: K=K-+1 -
062: ENDDO -
063: i
064 BCOUNT = 1 )

144




-l::
[} "
065: K=1 =
066: DOWHILE (K .LE. 80)
067: GBUFER(K) = "2’ »
068: K=K+1 o,
069: ENDDO .
070: o
071: DOWHILE (MOREIN) 5
o72: CW = GCHAR() e
073: IF ((CW .EQ. BLANK) .OR. (CW .EQ. LINEFD) .OR.
074: X (CW .EQ. EOTEXT)) THEN
075: IF (CW .EQ. EOTEXT) THEN
076: MOREIN == 0
077: ENDIF
078: IF (FILL+1+4E 'FPOS) .LE. MAXPOS) THEN 3
079: CALL PC.iAR(BLANK) ~
080: FILL = FILL + 1 _
081: ELSE .
082: CALL PCHAR(LINEFD) X
083: FILL =0
084: ENDIF .
085: K=1 -
y 086: DOWHILE (K .LE. BUFPOS) -
. 087: CALL PCHAR(BUFFER(K)) o
d 088: K=K+ 1 .
089: ENDDO
090: FILL = FILL + BUFPOS :
091: BUFPOS = 0 :
092: ELSE .
093: IF (BUFPOS EQ. MAXPOS) THEN =
094: WRITE(6,10) o
095: 10 FORMAT(" ","*#+xWORD TO LONGx*#x")
096: MOREIN = 1 A » ;Z
097: ELSE
098: BUFPOS = BUFPOS + 1 .
099: BUFFER(BUFPOS) = CW o
100: ENDIF N
101: ENDIF o
102: ENDDO v
103: CALL PCHAR(LINEFD) “
104: END B
: 105:
106:
107: CHARACTER=*1 FUNCTION GCHAR()
108: INTEGER MATCH
109: CHARACTER=*80 GBUFSTR G
110:
- 111 INTEGER MOREIN, BCOUNT, I, MAXPOS
112: CHARACTER*1 OUTLIN(31), EOTEXT, BLANK, LINEFD. o
113: X GBUFER(80) S
114: CHARACTER#*30 GBUF ‘ -
115: COMMON /ALL/ MOREIN, BCOUNT, [, MAXPOS, OUTLIN,
116: X EOTEXT. BLANK, LINEFD, GBUFER. GBUF -
- 117: Gl
X 118: EQUIVALENCE (GBUFSTR.GBUFER) I;ﬁ:
- 119: :-'_.
v
145 i
L S P I . R . et . - -
Y R R S D Yo T Lk UL T B R S OO PN S SN A S




P[
;
. J
Y 120: IF (GBUFER(1) .EQ. '2') THEN .
L’; 121: READ(5,20) GBUF .:3:
X 122: 20 FORMAT(AS0) <
123: C ™
124: C MATCH(CARRAY,C) RETURNS 1 IF CHARACTER C IS IN -
CHARACTER ARRAY X
- 125: C CARRAY, RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY. -
126: C e
127 IF (MATCH(GBUF,EOTEXT) .EQ. 0) THEN o
128: WRITE(8,30) ¢
129: 30 FORMAT(® ’,’#+»*NO END OF TEXT MARK*##') >
. 130: GBUFER(2) = EOTEXT
' 131: ELSE o
d 132: C GBUFER(1) = GBUF 2
; 133: GBUFSTR = GBUF
J 134: ENDIF
135: ENDIF :
136: GCHAR = GBUFER(BCOUNT) %
: 137: BCOUNT = BCOUNT + 1 o~
. 138: END -
139: o
140: .;
141: SUBROUTINE PCHAR (C) -
142: CHARACTERs1 C
143: CHARACTER#31 SOUT, OUTLINST
144: INTEGER K -
145: -
146: INTEGER MOREIN, BCOUNT, I, MAXPOS R
147 CHARACTER+1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD, R
148: X GBUFER(80) o
149: CHARACTER=#80 GBUF N
150: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN, o
151: X EOTEXT. BLANK, LINEFD, GBUFER, GBUF o
152: g
153: EQUIVALENCE (OUTLINST,OUTLIN) Ot
154:
155: IF (C .EQ. LINEFD) THEN .
156: SOUT = OUTLINST o
157: WRITE(S6,40) SOUT .
3 158: 40 FORMAT( ',A31) : .:-:.
: 159: K=1 A
160: DOWHILE (K .LE. MAXPOS) -
161: OUTLIN(K) = '’ o
162: K=K-+1
163: ENDDO .
16+4: [=1 ;
165: ELSE o
166: OUTLIN(I) = C ) —
167: I=1+1 Ik
168: ENDIF R
169 END "
Program 2 o
I: INT WIDTH = 30, Iy
N
146

X .




RERE |  orh R Dbl by b S

'L.

Le, 0 "W
LI

XNOD N

48:

9o
OO~ OO

TV Oy O

VST S DA I SV S TR DR Iy g

HEIGHT = 20,

GRIDWD = 61,

LARGENUM = 100000000
STRING TICKS[61] =

PROC SORT (INT ARRAY KEYBUF, INT ARRAY FREEBUF, INT N)

INT I, MAXP

I:=0

WHILE I < N DO
SRTKEYB(I) .= KEYBUF(I)
SRTFREEB(I) := FREEBUF(I)

Ii=1-1
END

: INT FUNC MAXELE (INT ARRAY BUF, INT N)

INT I, MAXPTR, MAX

MAXPTR = -1
MAX = -LARGENUM
I:=0
WHILE I < N DO
IF BUF(I) > MAX
THEN
MAX := BUF(I)
MAXPTR =1
END
I =1-1
END
RETURN(MAXPTR)

INT L MINPTR, MIN

MINPTR = -1

INT ARRAY SRTKEYB(100), SRTFREEB(100)

I'=1+1
END
I:=N
WHILEI > 0 DO
MAXP = MAXELE(SRTKEYB,I)
KEYBUF(N-I) := SRTKEYB(MAXP)

FREEBUF(N-I) := SRTFREEB(MAXP)
CALL REMOVE(SRTKEYB MAXP,I)
CALL REMOVE(SRTFREEB MAXP,I)

D INT FUNC MINELE (INT ARRAY BUF, INT N)

147

ottt
e dtal A

la‘a atmataladallialarl




57:  MIN := LARGENUM .
58. 1:=0 , :
59: WHILE I < N DO .
60: IF BUF(I) < MIN :
61: THEN
82: MIN = BUF(]) )
63: MINPTR = | .
64: END
85: Il =1+1 ,
66: END '
87: RETURN(MINPTR)
68:
69:
70:
71: PROC REMOVE (INT ARRAY BUF, INT PTR, INT N)
72:
73: INT 1
T4: B
75: I .= PTR
76:  WHILE I < N-1 DO
77: BUF(I) := BUF(I+1) -
78: I:=1+1 ~
79: END ‘
80: .
81: .
82: .
83: INT FUMNC ABS (INT VAL) .
84: -
85: IFVAL <0 B
86: THEN
87: RETURN(-VAL) X
88: ELSE -
89: RETURN(VAL) A
90: END -
91: -
92:
93: 5
94: INT FUNC SLASH (INT TOP, INT BOT) "
95: : -
96: INT RES
97: B
98: RES := TOP/BOT -
99: IF TOP <> RES*BOT .AND.
100: (TOP > 0 .AND. BOT > 0 .OR. TOP < 0 AND. BOT < 0)
101: THEN RES := RES +~ 1 .
- 102: END -
103: RETURN(RES) R
104:
" 105: INT FUNC MOD (INT N, INT M)
- 106:
. 107:  INT VAL 4 .
- 108: ‘ :I-
109: VAL := N-N MM .
110 IF VAL < 0 i
111: THEN e
148 L
K

Wt T e wt e T ata . P A S RO . R P
y P T P I PR, A o AU TR S P - UL IR S S g



112: VAL := VAL + M

113: END

114: RETURN (VAL)
115:

116:

117: PROC MAIN

118:

119: CHAR ARRAY GRID(61)
120: STRING STR[61]
121:  INT ARRAY XVAL(100), YVAL(100)

122: INT I, J, NUMOBS, MAXY, MAXX, MINX, HORISP, VERTSP, VLINE
123:

124: =0

125: WHILE .NOT. EOI DO

126: READ(XVAL(I),YVAL(1))

127: I =1+1

128: END

129: NUMOBS (=1

130:

131: CALL SORT(YVAL XVAL,NUMOBS)

132: MAXY :== YVAL(0O)

133: VERTSP := SLASH(MAXY ,HEIGHT)

134:

135: MAXX := XVAL(MAXELE(XVAL,NUMOBS))
136: MINX = XVAL(MINELE(XVAL ,NUMOBS))
137: IF ABS(MINX) > ABS(MAXX)

138: THEN

139: HORISP := SLASH(ABS(MINX]},WIDTH)
140: ELSE

141: HORISP = SLASH(ABS(MAXX),WIDTH)
142: END

143:

144: STR =" X AXIS’

145: WRITE(STR,SKIP)
146: I'=0

147 VLINE := HEIGHT
148: WHILE VLINE > 0DO

149:

150: J:=0

151: IF MOD(VLINE,5) = 0

152: THEN

153: UNPACK(TICKS,GRID)

154: ELSE

135: WHILE J < GRIDWD DO

136: GRID(J) ="~

157 J =J+1

158: END

159: END

160:

161: VLINE ;= VLINE - 1

162:

163: WHILE VLINE«VERTSP < YVAL( DO
164 IFXVALL) >=0

165: THEN

166 GRIDIWIDTH ~ SLASHINVALDLHORISPY == "«7

119

PV W U AT A SR il IS W I i D UL W G O U SR P i TP U v SR P O R A P P IR Dy U iy

s

Al

P ).;I" L 4



167: ELSE .

168: GRID(WIDTH - SLASH(-XVAL(I), HORISP)) := "x"

169: END 4
170: I'=I+1 4
171: END

172:

173: GRID(WIDTH) := "|

174: PACK(GRID,STR) . !
175: WRITE(STR,SKIP)

176: END

177

178: STR =

b b b o b | e e T
179:  UNPACK(STR.GRID) ;
180:  WHILE 0 <= YVAL(I) .AND. I <= NUMOBS DO -

181: IF XVAL(Q) >=0

182: THEN

183: GRID(WIDTH + SLASH(XVAL(I),HORISP)) := "»"
184: ELSE i
185: GRID(WIDTH - SLASH(-XVAL(I), HORISP)) := "x"
186: END

187: I[:=1+1

188: END

189:

190: PACK(GRID,STR)
191: WRITE(STR,SKIP)

192: STR ;=" Y AXIS’
193: WRITE(STR,SKIP)
194:

195: START MAIN

Program 3

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTIONS
DRIVER, GETARG,
002: C CHAREQ, CODE, AND PRINT. THEIR SOURCE CODE IS
DESCRIBED AND
003: C INCLUDED AT THE END FOR COMPLETENESS. iy
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS :
INCLUDE A LEADING
005: C AND REQUIRED '’ FOR CARRIAGE CONTROL

006: C -
007: INTEGER POOL(7). LSTEND R
008: INTEGER LISTSZ X
009: C R
010: COMMON /ALL/ LISTSZ v
011: C )
012: C

013: LISTSZ = 5 X
014: CALL DRIVER (POOL, LSTEND) K
015: STOP

016 END B
017: C v
018: C

019: FUNCTION ADFRST (POOL. LSTEND. I)

PRI Pty WP T T Wy GEL A W Wy W Dy WA S Dty Pl G | PRI YAV S DV VAL P S U SR D D wer st wers




P A s B S Gt e it ettt b et e i Bt Gt e S e - iep

'l -.l ‘ ‘

020: INTEGER ADFRST -3
021: INTEGER POOL(7), LSTEND, I -
022: INTEGER LISTSZ

023: COMMON /ALL/ LISTSZ A
024: C o
025: INTEGER A <
026: C v
027: IF (LSTEND .GT. LISTSZ) THEN .
028: LSTEND = LISTSZ - 1 -
029: ENDIF A
030: LSTEND = LSTEND + 1 .
031: A = LSTEND

032: DOWHILE (A .GE. 1)

033: POOL(A+1) = POOL(A)
034: A=A-1 pt
035: ENDDO X
036: C s
037: POOL(1) =1
038: ADFRST = LSTEND e
039: RETURN e
040: END
041: C -
042: C =
043: FUNCTION ADLAST (POOL, LSTEND, I) -
044: INTEGER ADLAST
045: INTEGER POOL(7), LSTEND, I -
046: INTEGER LISTSZ -
047: COMMON /ALL/ LISTSZ :
048: C

049: [F (LSTEND .LE. LISTSZ) THEN .
050: LSTEND = LSTEND + 1
051: POOL(LSTEND) = 1 -
052: ENDIF o
053: ADLAST = LSTEND

054: RETURN
055: END .
056: C -
057: C "
058: ~ FUNCTION DELFST (POOL, LSTEND)
059: INTEGER DELFST 53
060: INTEGER POOL(7), LSTEND -
061: INTEGER LISTSZ ]
062: COMMON JALL, LISTSZ
063: C .
064: INTEGER A -
065: IF (LSTEND .GT. 1) THEN

066: A =1

067: LSTEND = LSTEND - 1 "
068: DOWHILE (A LE. LSTEND) X
069: POOL(A) = POOL(A~1) 3
070: A=A~-1 :.'
071: ENDDO iy
072: ENDIF

073: DELFST = LSTEND
074 RETURN

, -
ll ?




'_,I-'h.l'. it et Aaifaa et oA A Bl S Bl B Bk Sa/l A Ll R 40

:
-
t' 075: END
- 076: C
077: C
078: FUNCTION DELLST (LSTEND)
079: INTEGER DELLST
080: INTEGER LSTEND
'.: 081: C
N 082: IF (LSTEND .GE. 1) THEN
N 083: LSTEND = LSTEND - 1
084: ENDIF
08s: DELLST = LSTEND
086: RETURN
b 087: END
(- 088: C
:~' 089: C
v 090: FUNCTION FIRST (POOL, LSTEND)
o91: INTEGER FIRST
. 092: INTEGER POOL(7), LSTEND )
L 093: C
r- 094: IF (LSTEND .LE. 1) THEN
E;‘_ 095: FIRST = 0
* 096: ELSE
» 097: FIRST = POOL(1)
098: ENDIF
099: RETURN
100: END
101: C
102: C

103: FUNCTION EMPTY (LSTEND)

104: INTEGER EMPTY

105: INTEGER LSTEND

106: C

107: IF (LSTEND .LE. 1) THEN

108: T EMPTY =1

109: ELSE

110: EMPTY = 0

111 ENDIF

112: RETURN

113: END

114: C

115: C

116: FUNCTION LSTLEN (LSTEND)
LT INTEGER LSTLEN

118 INTEGER LSTEND

119: C

120: LSTLEN == LSTEND - 1

121: RETURN

122: END

123: C -
124: C R
125: FUNCTION NEWLST (LSTEND) ]
126: INTEGER NEWLST -
127 INTEGER LSTEND
128: C

129: NEWLST =0

R P S AT T AP TR U S W SRS IS S/ Sy WA Y YISy LY [T U PP WP Gy




134: SUBROUTINE REVERS (POOL, LSTEND)

135: INTEGER POOL(7), LSTEND X
136: C .
137: INTEGER I, N
138: C
139: N = LSTEND )
140: I=1 -
141: DOWHILE (I .LE. N) I8,
142: POOL(I) = POOL(N) .
143: N=N-1 >
144: I=1+1 =
145: ENDDO
146: RETURN
147: END

Program 4

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE ROUTINES
DRIVER, STREQ, WORDEQ,

002: C NXTSTR, ARRCPY, CHARPT, BEFORE, CHAREQ, AND WRDBEF.
THEIR SOURCE

003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR
COMPLETENESS.

004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS
INCLUDE A LEADING -

005: C AND REQUIRED ' ' FOR CARRIAGE CONTROL o

006: C THE SFORT LANGUAGE CONSTRUCT '.IF (EXPRESSION)' BEGINS -

A BLOCKED
007: C [F-THEN([-ELSE| STATEMENT, AND IT IS EQUIVALENT TO

THE F77
008: C 'IF (EXPRESSION) THEN".
009: C
010: CALL DRIVER .
o11: STOP -
012: END ' '
013: C
014: C o
015: SUBROUTINE MAINSB
016: C Z~'
017: LOGICAL=1 U$KEY(3),U$AUTH(11).U$TITL(58),U$YEAR(2),U&-\CT.\'(I) >
018: LOGICAL=*1 .\«I$K.EY(3).M$AUTH(11),M$TITL(58),.\I$YEAR(2) :'~
019: LOGICAL=*1 ZZZ(3), LASTUK(3), LASTMK(3)
020: LOGICAL=*1 STREQ, CHAREQ, BEFORE, CHARPT
021: INTEGER I
022: C
023: LOGICAL=*1 WORD(500.12). REFKEY(1000.3) .
024: INTEGER NUMWDS. NUMREF. PTR(500), NEXNT(1000) ,
025: COMMON /AWORDS/ WORD, REFKEY. NUAWDS, NUMREF. PTR., NEXT
026: C
027" WRITE(6,290)

028: 200 FORMAT( . UPDATED LIST OF MASTER ENTRIES")




Ik g ariC gpdt aing sl it ok .-”‘ \’,"."."'.*T.J' L e out e o AR RS and aivh Bk gt o i aAde un ueh ok e s s o

029: DO 300I=1,3
030: LASTMK(I) = CHARPT(' *)
031: LASTUK(I) = CHARPT(" ')
032: Z2Z(1) = CHARPT('Z")
033: 300 CONTINUE
034: C
035: NUMWDS =0
036: NUMREF =0
037: CALL GETNM(MSKEY MSAUTH MSTITL M$YEAR,LASTMK)
038: CALL GETNUP(UsKEY,UsAUTH.UsTITL,U$YEAR,U$ACTN ,LASTUK)
039: C
040: DOWHILE ((.NOT.(STREQ(MS$KEY,ZZZ,3))) .OR.
041: X (NOT.(STREQ(USKEY.ZZZ.3))) )
042: IF (STREQ(USKEY . MS$KEY.3))
043: IF (NOT.(CHAREQ(USACTN(1),'R")))
044: WRITE(6,100) USKEY
045: 100 FORMAT(’ ',’KEY ’,3A1,' IS ALREADY IN FILE’)
046: ENDIF
047: CALL OUTPUT(USKEY,USAUTH,USTITL,U$YEAR)
048: CALL DICTUP(USKEY,US$TITL,58)
049: CALL GETNM(MSKEY MSAUTH M$TITL M$YEAR,LASTMK)
050: CALL GETNUP(USKEY,USAUTH,U$TITL . USYEAR,USACTN,LASTUK)
051: ENDIF
052: C
053: .IF (BEFORE(MS$KEY,3,USKEY,2))
054: CALL OUTPUTMS$KEY MSAUTH.MS$TITL M$YEAR)
055: CALL DICTUPMSKEY M$TITL,58)
056: CALL GETNM(MSKEY MSAUTH,MS$TITL M$YEAR, LASTMK)
057: ENDIF
058: C
059: JF (BEFORE(USKEY,3,M$KEY.3))
060: JF (CHAREQ(USACTN(1).’R"))
061: WRITE(6,110) USKEY
062: 110 FORMAT(’ '’'UPDATE KEY ',3A1,” NOT FOUND’)
063: ENDIF
064: CALL OUTPUT(USKEY,USAUTH,US$TITL,USYEAR)
085: CALL DICTUP(USKEY,U$TITL,58)
066: CALL GETNUP(USKEY,USAUTH, U$TITL , USYEAR, USACTN,LASTUK)
067: ENDIF
068: ENDDO
089: C
070: CALL SRTWDS
o71: CALL PRTWDS
oTe: RETURN
073: END
074: C
075: C
0786: SUBROUTINE GETNM(KEY . AUTH, TITL,.YEAR.LASTMI)
T LOGICAL=*1 KEY(3),AUTH(11), TITL(58),YEAR(2), LASTMIK(3)
078: C
079: LOGICAL =1 SEQ. INLINE(80)
080: LOGICAL=*1 BEFORE, CHARPT. CHAREQ
081: LOGICAL+1 GO$M. GO3SU
082: COMMON DRIV, GOSM, GOSU
083: C

154

..'..".‘.".*.‘.'-" x.".'.“.‘ e .-"' -" T e "'..‘.' . R .

e e e e e e e e . .
L R N T U U P S S A M‘J%mq.__hAAuuLx._mu..f@.ﬂA-n. x.;-;.i- j



088

093

084:
085:
086:
087:

089:
090:
091:
092:

094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:

113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:

I E A S s YA I A il S AR a0 Sa A e A e At 0 e At

SEQ =1
DOWHILE (SEQ)
IF (GO$M)
[
: C READ FROM THE MASTER FILE
c
READ(10,200, END=299) INLINE
ELSE
C
: C SEE REMARK ABOUT THE CHARACTER ‘%’ LATER IN THE ROUTINE.
C
INLINE(1) = CHARPT('%’)
ENDIF
200 FORMAT(80AL)
DO 210I=1,3
KEY(I) = INLINE(I)
210 CONTINUE
DO 220l =1, 11
AUTH(I) = INLINE(3+1I)
220 CONTINUE
DO 2301 =1, 58
TITL(I) = INLINE(14-+1)
230 CONTINUE
DO240I=1, 2
YEAR(I) = INLINE(72+I)
240 CONTINUE
C

C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT
THE CHARACTER '%’
: C  AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS
FOR MULTIPLE
C SETS OF INPUT CASES.
C
IF ((NOT.(CHAREQ(KEY(1),"%"))) .AND.
(BEFORE(KEY,3,LASTMK,3)) )
WRITE(6,250) KEY
FORMAT(’ ',’KEY ',3A1,” OUT OF SEQUENCE")
ELSE
CALL ARRCPY(KEY,LASTMK,3)
SEQ =0
ENDIF
IF (CHAREQ(KEY(1),%%"))
SEQ =0
DO 2701 =1, 3
KEY(I) = CHARPT('Z")
CONTINUE
ENDIF
ENDDO
RETURN
209 CONTINUE
GO$M = o
DO 260 =1.3
KEY(I) = CHARPT('Z")
260 CONTINUE
RETURN

X

250

t2
-3



i AAC A Rl Sl N RS TRT R CARCAA I S AN et S iCh i S Dl A s Al Mt diren ot .r L IR ek i o i i it 4 v}v.x,_'_wv

137: END

138: C
139: C
140: SUBROUTINE GETNUP(KEY,AUTH,TITL, YEAR.ACTN,LASTUK)
141: LOGICAL=»1 KEY(3),AUTH(11),TITL(58), YEAR(2).ACTN(1),LASTUK(3)
142: C

- 143: LOGICAL=*1 SEQ, INLINE(80)

- 144: LOGICAL=*1 BEFORE, CHARPT, CHAREQ

. 145: LOGICAL#*1 GO$M, GO$U
146: COMMON /DRIV/ GO$M, GO$U
147: C

148: SEQ =1
149: DOWHILE (SEQ)

150: IF (GO$U)

151: C

152: C READ FROM THE UPDATES FILE
153: C

154: READ(11,200 END=299) INLINE
155: ELSE

156: C

157: C SEE REMARK ABOUT THE CHARACTER '7%’' LATER IN THE ROUTINE.
158: C

159: INLINE(1) = CHARPT('%")
160: ENDIF

161: 200 FORMAT(80A1)

162: DO210]l=1,3

163: KEY(I) = INLINE(I)

164: 210 CONTINUE

165: DO220I=1, 11

166: AUTH(I) = INLINE(3+])
167: 220 CONTINUE

168: DO 2301 =1, 58

169: TITL(I) = INLINE(24+])
170: 230 CONTINUE

171: DO240I=1,2

172: YEAR(I) = INLINE(72+1)
173: 240 CONTINUE

174: ACTN(1) = INLINE(75)

175: C

176: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT
THE CHARACTER '%'’

177: C  AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS
FOR MULTIPLE

178: C SETS OF INPUT CASES.

179: C

180: IF ((NOT.(CHAREQ(KEY(1),'9%2"))) .AND.

181: X (BEFORE(KEY,3,LASTUK.,3)) )

182: WRITE(6.250) KEY

183: 250 FORMAT(’ ','’KEY ".3A1,' OUT OF SEQUENCE")
) 184: ELSE
- 185: CALL ARRCPY(KEY.LASTUK.3)
: 186: SEQ =0

187: ENDIF

18%: JF (CHAREQ(KEY(1).°¢ )

SEQ =0




e 2 8 28 @

190:
191:
192:
193:
194:
1935:
196:
197:

12 19 W
[ -3 ¢
©o

13
O IR KRR R R R R R
CDXHDUk &N O

190 19 15 W

[ 1

[ =R
(2]

[ )

DO2701=1,3
KEY(l) = CHARPT('Z")
270 CONTINUE
ENDIF
ENDDO
RETURN
299 CONTINUE
GO$U =0
DO2601I=1,3
KEY(I) = CHARPT('Z")

: 260 CONTINUE

RETURN
END
c
C
SUBROUTINE OUTPUT(KEY,AUTH,TITL,YEAR)
LOGICALx1 KEY(3), AUTH(11), TITL(58), YEAR(2)
c

WRITE(6,200) KEY, AUTH, TITL, YEAR

: 200  FORMAT(’ ’,3A1,11A1,58A1,2A1)

RETURN
END
c
c
SUBROUTINE PRTWDS
c
LOGICAL*1 WORD(500,12), REFKEY(1000,3)
INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
COMMON /WORDS;/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

: C
: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED

LIST.

: C WORD(I,J) IS A KEYWORD -~ J RANGING FROM 1 TO 12
: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS

AS A

: C KEYWORD WORD(1,J]),J=1,12
: C REFKEY(NEXT(PTR(I)) K),K=1,3 IS THE SECOND 3 LETTER KEY

THAT HAS

: C AS A KEYWORD WORD(1,J),J=1,12
: C REFKEY(NEXT(NEXT(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
1 C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER

e

KEYS FOR
©C THE PARTICULAR KEYWORD
INTEGER L. J
LOGICAL#1 FLAG
C
WRITE(6,200)
1200 FORMAT( '’ KEYWORD REFEREXNCE LIST")

DO 2101 =1, NUMWDS
FLAG =1
WRITE(6.220) (WORD(1.J).J=1.12)

- 220 FORMAT(’ ".12A1)

LAST = PTR(I)
DOWHILE (FLAG)

157

4 _‘ir‘l 3

v ey o]

A
0y

v



& 0ga -

W
-~
‘ »
\ 241: WRITE(8,230) (REFKEY(LAST,J),J=1,3) '
N 242: 230 FORMAT(’ '’ '.3Al) ¢
: 243: LAST = NEXT(LAST) ol
244: IF (LAST .EQ. -1) _
245: FLAG =0 o
248: ENDIF .
247: ENDDO {

r

: 248: 210 CONTINUE
: 249: RETURN

- e
LAY

250: END
251: C .
252: C
253: SUBROUTINE DICTUP(KEY,STR,STRLEN)
: 254: LOGICAL=*1 KEY(3), STR(120) ]
% 255: INTEGER STRLEN S
256: C -
257: LOGICAL*1 WDLEFT, FLAG, OKLEN, NEXTWD(120), WORDEQ -
258: INTEGER LPTR, NXTSTR, LEN, LAB, I, K o
259: C .
260: LOGICAL#*1 WORD(500,12), REFKEY(1000,3) <
261: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000) e
262: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT ~
2683: C
264: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A ]
LINKED LIST. f

265: C WORD(I,J) IS A KEYWORD - J RANGING FROM 1 TO 12

266: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A

267: C KEYWORD WORD(L,J),J=1,12

268: C REFKEY(NEXT(PTR(I)),K),K=1.3 IS THE SECOND 3 LETTER KEY
THAT HAS

269: C  AS A KEYWORD WORD(LJ),J=1,12

270: C REFKEY(NEXT(NEXT(PTR(I))).K),K=1,3 IS THE THIRD ... ETC.

- - P
[P
R R R Y
P
" "

271: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER 4
KEYS FOR .y
272: C THE PARTICULAR KEYWORD 9
273: C
274: WDLEFT =1 o
275: LPTR = 1 5
276: C
277 DOWHILE (WDLEFT) i
278: FLAG = 1 7
279: OKLEN = 1
280: LEN = NXTSTR(STR.STRLEN,LPTR.NEXTWD.120) o
281: IF (LEN .EQ. 0) T
282: WDLEFT =0 i
283: ENDIF -
284: C '
285: IF (LEN .LE. 2)
286 OKLEN = 0
ART: ENDIF _
288: C -
289: .IF (OKLEN) A
290: I1=1
291: DOWHILE ((I .LE. NUMWDS).AND. FLAG )

T e e

P i T T AT P B S
Gatat*altes tatatatcatatatatatalatal >




|

o % . o g > :
Jat RS iud S el et S T T T W T A S S W R R TR T w2 v g’ 40, a0y ot phu at b A - T St

_‘
N -
2 5
E . 0,
A 202: IF (WORDEQ(NEXTWD,1)) 7
. 293: LAB = I -
. 294: FLAG = 0
295: ENDIF K
: 296: I=1+1 -:
v 297: ENDDO -
:. 208: .IF (FLAG) :: ’
- 299: NUMWDS = NUMWDS + 1
i 300: NUMREF = NUMREF + 1 =
,’:f 301: DO 300K =1, 12 g
N 302: WORD(NUMWDS,K) = NEXTWD(K) -
. 303: 300 CONTINUE
- 304: PTR(NUMWDS) = NUMREF -
N 305: DO310K =1,3 =
306: REFKEY(NUMREF,K) = KEY(K) =
. 307: 310 CONTINUE
v 308: NEXT(NUMREF) = -1
: 309: ELSE .
310: NUMREF == NUMREF + 1 =
311: DO320K =1,3 -
312: REFKEY(NUMREF K) = KEY(K) "
313: 320 CONTINUE -
314: NEXT(NUMREF) = PTR(LAB)
315: PTR(LAB) = NUMREF
316: ENDIF
317: ENDIF
318: ENDDO "
319: C i
320: RETURN .
321: END
322: C
323. C
324: SUBROUTINE SRTWDS -
325 C
326: LOGICAL*1 WORD(500,12). REFKEY(1000,3) -
327: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
328: COMMON /WORDS,;/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT N
329: C -
330: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A N
LINKED LIST.
331: C WORD(L.J) IS A KEYWORD — J RANGING FROM 1 TO 12 -
332: C REFKEY(PTR(1).K).K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS N
AS A
333: C KEYWORD WORD(LJ),J=1,12
334+ C REFKEY(NEXT(PTR(I)),K),K=1.3 IS THE SECOND 3 LETTER KEY .
THAT HAS
335: C AS A KEYWORD WORD(LJ),J=1,12
336: C REFKEY(NEXT(NEXT(PTR(I))).K).K=1,3 IS THE THIRD ... ETC. N
337 C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER Sy
KEYS FOR iy
338: C THE PARTICULAR KEYWORD ~3
339: C >
340: INTEGER . J, K. LAB. LOWERB, UPPERB
341 LOGICAL*1 WRDBEF. NEXTWD(12)
342: C

. P . S L S B S PR PSR A . P . . R
L_A S WAL IDN DAy W SRy SRR WP T T AT, Ty Py P NN R V0, S T SRR U D NI SR TR LR, DU, )




:.J

A

NN

¢

Y

RAANOEEND! IR

K

e

Pl
Cape e,

343: UPPERB = NUMWDS -1

344: DO 400 I = 1, UPPERB

345: LOWERB=1+1

3486: DO 410 J = LOWERB, NUMWDS
347: IF (WRDBEF(J,I))

348: DO 300K =1, 12

349: NEXTWD(K) = WORD(LK)
350: 300 CONTINUE

351: LAB = PTR(I)

352: DO 310K =1, 12

353: WORD(1,K) = WORD(J,K)
354: 310 CONTINUE

355: PTR(I) = PTR(J)

338: DO 320K =1, 12

357 WORD(J,K) = NEXTWD(K)
358: 320 CONTINUE

359: PTR(J) = LAB

360: ENDIF

361: 410 CONTINUE

362: 400 CONTINUE

363: C

36+4: RETURN

365: END

6.3. Appendix C. Operational Testing Procedure Applied in the

Cleanroom Study

Thls sectlon describes the operatlonal testlng process applled to the pro-
Jects In the Cleanroom emplrical lnvestigation. After consulting the references
[Thayer, Lipow & Nelson 78, Duran & Ntafos 81, Dyer 82a, Dyer 82a, Dyer
82b]., the followlng procedure was adopted to meet the partlcular eclr-

curmstances.

6.3.1. Test Data Selection

The first step In the test data generatlon process 1s to define the operatlon-
al proflle of the system. An Inltial attempt to deflne the operatlonal lnputs to
the message system and thelr serlallzatlon requlirements resulted In the regular

expression In Flgure 37.

160

P , PRSP
PR R )

N DAVORFOUGS Pt




L . EIRAEE A . . _[' - e - v .-. N - . .» v gl

Figure 37. Regular expression of logical inputs to the system in a single user
session.

.- “-- %

send |
group_send |
(read, find) (respond, hold, delete) |
reset |
names |
groupquery |
slgnon add_user | signoff
remove_user |
authorlze_user |
add_group |
remove_group |
Invalid |

This then led to a transition dlagram of functlonal paths through the system.
There were dlstinct transitlon arcs In the dlagram to correspond with distinct
functlonal states of the system. The system states were described as elther sys-
tem processing or operating states. A dlstinctlon In the processing of data that
Is transparent to the user s a system '‘processing state’ (e.g., whether or not a
target's queue Is empty). A distlnctlon ln the processing of data that a user was
dlrectly responsible for Is a system ‘‘operatlng state’ (e.g., giving an Incorrect
password). The arcs leaving a given node were each assigned a frequency such
that the total of all outgolng arcs from a glven node was one., Thls frequency
assignment was accomplished by polllng eleven well-seasoned users of the
Unlversity of Maryland Vax 11/780 malilng system. Now that each path

through the system had a (subjlective) probabliity. the schedule of presentation

161

Verl

e

.
{.'1'.1

e e %

50y \

P
Yy 4 ‘s % e




1
»
]
)

TR Y W TR _ W L. O S WY W W W v w

LAE i A g

Yy ¥ vw

and the test sample slze needed to be consldered.

The sequence of releases and thelr assoclated functlonality for one of the

teams appears In Flgure 38.

Figure 38. Schedule of Deliveries for a Sample Team.

Groupings of Capabllitles

B_00 signon,signofl

B_O add_user,remove_user,authorlze_user
B_1 names,Invalld_cmds

B_2 send_msg,read_msg,And_msg,hold_msg,

del_msg, respond,reset_queue
B_3 group_send,group_add,group_remove,
group_query

Rel ease Functlon Group
B_00 B_O B_1 B_2 B_3
R TR e R R |
1 x| | | | |
R Fomemm - R R Armmmmm e Foeeieee-- |
S S S S | | |
EEEE PR R TR PR R Aeeeeae - |
3 | XX | XX | | XX | |
EEEEE TR o R E PP R R oo |
4 | XX | XX | XX | XX | |
EREE TR R R e e o !
5 | XX | XX | XX | XX | X |
EEEEEEEPRE P R R EPE oo |

{Note that slnce each team could chose 1ts own dellvery schedule, the test gen-
eratlon process needed to be reevaluated for each team.) The graph from Flgure
37 has been cut and reconstructed according to the grouplngs of capabliltles
glven In Flgure 38, Be aware that the probablility for any glven path throush

the syvstem 13 preserved In such a4 process. The newly created ares tor the

162

......

.....

LA AL 't A N oWt il g A o il e A Al Al St ladaell e Al Sie pie 4V o dtaut i R AR SLAE A MR A N A TaD ad a it £t Bis A0 I Alathie il *ahe' slafad gy tadotod Aud fud Aok Tob Al Al s

c -
-~

."

G

v
P s

sls.\ >
e

v p' e,

0

Y]

e
5

1"7
NG



A" i har adin® it it PN T S W T Pulit. S Sust S A i M Bt A Ah st i Al Shad Sant Jet St Shat it dhadh Sdt el Sads ekt et Sad Sns e Sha S S e v el Jints iane g S gt Jags agrt o

groups are labeled with the probabilities that a glven system Input will Invoke

any functlon !n a particular group (see bottom of Fligure 39). Notlce that for

any sample slze of less than 200, the expected value of the number of test cases

Invoking a “'privileged’ functlon, group B_O, would be less than one. Slnce the
relatlve Input frequency for the “‘privileged” group of commands Is dispropor-

tlonate to thelr Importance (you would not be able to bulld and malntaln a net-

.........

work of subscribers without them), a separate schedule for testlng them ls creat-

ed. Flgure 38 shows the two schedules for testing.

Figure 39. Two Testing Schedules for a Sample Team.

Release
Functlon Group
Schedule 1
B_00x B O B_1 B_2 B_3
+---------- F---mmm-- - R E R Fo-m e i +
1 x| | | |
F--emmmm-- - dmmmmmm e - +------a--- R Fo----e----
2 ] o xX | x| | |
R EEE R R +---------- +----e----- e R
Schedule II
R R R R R R ERE R i +----------
3 | x| x| bxXX |
ERREREEE e R TR e
4 ] XX | x| 9 9x | x|
|---m----- e e Fmmeeemmmes ommmme
5 ] XX ] XX | X | XX | XX
R SRR T EEE R EEEEEEEE SR EE TR R
Operatlonal
frequency .005 . 129 .888 .180 1.000
«Note that the functions In B_00 are \mpllicltly tested in
all test cases.
163

v." v
[NERE? + PCE R

.,...
T e e s
N

.ot
. L

g S



Since Schedule I is a speclal case, first consider Schedule II with the func-
tlon group probabllities at the bottom of the columns. In order to accomplish
the concentration of test cases on the newly released functlons, each functional
group lIs assigned a relatlve welghting that 1t should have In the test subset
selections for each of the releases. The welghts In each of the columns should

sum to one.

Release Functlon Group
B_O B_1 B_2 B_3
EEEEEEEEEE Heememe - EEEEEE TR SRR TR |
3  [1/3 | o |1/2 | o I
EEEEEEEEEE LT TR R e
4 l1/3 |2/3 |1/3 | o |
e R L e R |
5 |1/3 |1/3 l1/8 | 1 |
EEEEEEEEEE TR TR TR LR |
005 129 686 180

The welghts In a glven column are then multlplled by the total assoclated fre-

a quency for that functional group at the bottom of the column.

E Release Functlon Group

L.

- B_O B_1 B_2 B_3

. EEEEEEEE L SRR EEEEE e R EEE T Fecemeenaaan |

‘ 3 |13 .0010|] O 0.0 | 1/2 .3#43 | O 0.0 |

! EEREEEEREEE R TR R TR

{ 4 | 1/3 .oo02 | 2/3 .088 | 1/3 .229 | O 0.0 !
EEEEEEEEEEE e s R E P EEREE EEEEEEEEEEE

{ 5 | 1/3 .002 | 1/3 .043 | 1/8 .114 | 1 180 |

i [+--memmmems S EEEEEEREEE R EE TR R R R

005 129 6386 180

The entrles (not the welghts) In the above table are the probabllitles that an In-

put wlll be selected to test a function In a glven group on a glven release., Sum-

L me e an aay o amme

164

SRR 2 SR IF IR B DS AP ST SRS S PPr U TIPS I N STV S DN L ST VA U VAP PR S G (U W Sy Gy ¢




T R N N N R T P T o T T T W R T R R T YT o L P Ty v N i s DA DR D82 4 an g

ming the rows horlzontally reflects the total distributlon across the releases.

Release Functlon Group
B_O B_1 B_2 B_3

f---ceeme--- SRR EEELT L SRR EETLEE LR LR |

3 |1/3 .000 | O 0.0 | 1/2 .343 | O 0.0 | .344
|---ememmm-- et EELEREEEE deeeemeeenn- e |

4 | 1/3 .o02 | 2/3 .088 | 1/3 .229 | O 0.0 | .317
|-ececenenn- R EE PR LR LR R |

5 | 1/3 .002 | 1/3 .043 | 1/8 .114 | 1 180 | .339
REEEETEEEES SR EETEETEEE deeemceeen-- SRR EE TR |

005 129 886 180 1.000

The above process repr=sents the partitloning on the input frequencles for the :A:

varlous functional grouplngs by release.

Hopefully at some time we wlll be able to speclfy the slze of our test sam-
ple from the rellabllity goals of the prolect. For the purposes of testing these
prolects, our experience has led us to choose a test sample size of 100 cases per
project. If ten of these cases (arbltrarlly) will be used In the testing of Schedule
I, nlnety wlll remaln for Schedule II. Multiplylng nlnety by the frequencles 1ln
the right hand column of the above table for Schedule IT led to the sample sizes
of 31, 29 and 30 test cases for releases 3, 4 and 5, respectively. The above pro-
cess has been undertaken to test the expandling system capabllitles, while con-
centrating on newly released functions and malntaining the composite Input dis-
tributlon. Flgure 40 summarizes the results from this stratificatlon process. In
testing release 1, only the slgnon and signoff functlons (group B_00) were avall-
able and hence only one test case !s needed. The remalning nine test cases are

appiled to release 2 to test the group of privileged" tunctlons B_0. The ares

165

P T O B P T, W) G T ST S S « WP POV W TIPS 2 B RRIPR SP I CIe Se S S N T




s W s . s,
h
f

UL Y

drdly RN RN

i 0O A

el et al A
RO |

- -

v

g
Flj
5
i
&

Pl vt

.

Latgl e amuny Mol el e et s AMECILE - afinc ST gLt SR N LA S oS M and gAR ol i i gl o & atvb el LA AN AN A A ST A Al A

B_00, ..., B_3 are reassigned the frequencles glven in Flgure 40 when test data

are belng generated for the appropriate release.

Figure §0. Arc Frequency Assignment es a Result of Stratification.

Release Arc Frequency Asslgnment for #Test
Functlon Group Cases
B_00x B_O B_1 B_2 B_3
1 1.0 0.0 0.0 0.0 0.0 1
2 0.0 1.0 0.0 0.0 0.0 9
3 0.0 .003 0.0 .997 0.0 31
4 0.0 .008 271 723 0.0 29
) 0.0 .008 .127 .336 .9531 30
100

*Recall that the functions In B_00 are Implicltly tested in
all test cases.

After thls moderately complex procedure, test data can finally be created.
W1th respect to the revised arc frequency asslgnments above, a set of test data

of the appropriate size Is randomly generated for each release.

6.3.2. Testing Process and Failure Observation

The =zctual testlng process consists of three phases for each test case: gys—
tem ‘‘staie’’ setup (recall the system processing and operating ‘‘states”
described earller), executing the actuai test, and verifying the result of the test.
Since our concern ln the rellabllity analysis 1s with fallure-free executlon Inter-
vals, the cpu-time for just the second phase. the actual test case executlon, s

Inciuded 1n our calculatlon.

166

Chdl)




-
-
|
)

RIS JRARN I It i S AR i 20 M A 0 SVt A MR AL SRSV M Sl A A i S A A el M el oA R AN Aad SR Aal And At cadh et S Al Bad Gall B Ak A S &

The prolects developed were tested Interactively, with each glven test case
having one of four possible outcomes. If the system performed to expectations
on the test case, the outcome was a ‘success.” If the system’s performance did
not meet expectatlons, the outcome was a 'fallure’ and was rated according to
severity: 1 - product inoperable, 2 - maj)or functlon in the product inoperable, 3
- some part of a majJor function Inoperable, or 4 - cosmetlc type fallure. If the
outcome was a 'fallure’ but the same fallure was observed on an earller test case
In thls release, the outcome was termed a 'duplicate fallure.” Flnally, If the test
case was not able to be executed because we were unable to create the proper
system ‘‘state’ (on account of fallures In this release), the outcome of the test
case was 'deferred.” Test cases with outcomes of 'fallure,’ 'dupllicate fallure,” or

‘deferred’ were Included In the test set of the next release.

6.3.3. Failure Counting

Several software rellablllty models are based on a product's hlstory of
fallure-free execution Intervals [Jellnski & Moranda 73, Dyer & Mllis 82, Goel
82]. In order to calculate these Intervals, a conslstent Interpretatlon of what
constitutes a fallure must be determlned. A method of ‘‘sortlng’ or masking
fallures by assoclated product release, product function or by fatlure severity
has been recognlzed [Dyer 81]. Thls technlque enables calculation of rellabliity
estlmates for certaln functlons withln a system, Including only those fallures
worse than a certaln severlty, etc. In addltlon to these optlons, a more funda-

mental set of questlons needs to be consldered. Such as, whether or not dupll-

167

.. N
v e
o



. A At Dl Sk Al St Sndeun e v e iee Sl it e 8 <o A i St B i i st S S SR SN et o B ARt it LSBT Ak AR S AN 4 S M A

cate fallures should be counted, or whether the executlon time for regression
(previously falled) tests should be included. Several of these fallure counting ls-

sues are summarized In Flgure 41.

Figure 41. Failure Counting Issues.

Always Include cpu tlme 1n fallure-free interval for (unless masked)
successful non-regression tests
first occurrence of distinct fallures
Never Include c¢pu time for
deferred test cases
, Optlons:
A. Include cpu time from regresslon tests:
1. Just from successful?
2. Just from falled?
B. Duplicate fallures:
1. lnclude dupilcate fallures observed 1n the same release?
2. Include duplicate fallures observed 1n later releases?
C. Executlon Interval that terminated with end of testing (assumlng did
not end with a fallure):
1. discard?
2. Include as fallure-free executlon lnterval -- treat end of testing as
a fallure?
3. Include as fallure-free executlon lnterval of twice the length --
treat end of testing as a fallure twlce as far off?
D. Masking:
1. by testing schedule?
. by product release?
. by product functlon?
. by fallure severity?

e Wow

168




-
x -
o

’
A

et ) %

v v v W
b

7. References

[Adams 84]

F

E. N. Adams, Optlmlzing Preventlve Service of Software Products,
IBM Journal of Research and Development 28, 1, pp. 2-14, Jan. 84.

[Albln & Ferreol 82]
J.-L. Albln and R. Ferreol, Collecte et analyse de mesures de logiclel
(Collection and Analysls of Software Data), Technique et Science In-
formatiques 1, 4, pp. 297-313, 1982. (Ralro ISSN 0752-4072)

[Balley & Baslll 81]
J. W. Balley and V. R. Baslll, A Meta-Model for Software Develop-
ment Resource Expendltures, Proc. Fifth Int. Conf. Software Engr.,
San Dlego, CA, pp. 107-118, 1981.

DA (RS o on PN

(Balley 84]
J. W. Balley, Teachlng Ada: A Comparison of Two Approaches,
Dept. Com. Scl., Unlv. Maryland, College Park, MD, working paper,
1984. .

[Baker 72a] =
F. T. Baker, System Quallty Through Structured Programming, .~.
AFIPS Proc. 1972 Fall Joint Computer Conf. 41, pp. 339-343, 1972. -

(Baker 72b]
F. T. Baker, Chlef Programmer Team Management cf Production
Programming, IBM Systems J. 11, 1, pp. 131-149, 1872.

(Baker 81]
F. T. Baker, Chlef Programmer Teams, pp. 249-254 In Tutorial on
Structured Programmang: Integrated Practices, ed. V. R. Basill and
F. T. Baker, IEEE, 1981.

[Baslll et al. 33]
V. R. Baslll, E. E. Katz, N. M. Panlillo-Yap. C. L. Ramsey, and S.
Chang, A Quantltatlve Characterizatlon and Evaluation of a Soft-
ware Development In Ada, (to appear IEEE Computer, September
1985)

{Baslll & Turner 78]
V. R. Baslll and A. J. Turner, SIMPL-T- A Structured Programmung
Language, Paladln House Publishers. Geneva, IL. 1976.




F gl J i Al Adh T Jal S0 A S B St e 4 Andhan b Aen gean g T A bt At i S dbe Bie ke gl e AN aie Bae Sl e DAt St e chhe Site Aia il w4t e SAR ) Ya g g ta A s gy

.
i
.
3

[Basllt et al. 77
V. R. Basill, M. V. Zelkowitz, F. E. McGarry, R. W. Relter, Jr., W,
F. Truszkowskl, and D. L. Welss, The Software Englneering Labora-
tory, Software Eng. Lab., NASA/Goddard Space Flight Center,
Greenbelt, MD, Rep. SEL-77-001, May 1977.

[Baslll & Zelkowlitz 78]
V. R. Basill and M. V. Zelkowltz, Analyzing Medlum-Scale Software
Developments, Proc. Third Int. Conf. Software Engr., Atlanta, GA,
pp. 116-123, May 1978.

[Baslll 80]
Victor R. Baslll, Tutortal on Models and Metrics for Software
Management and Engineering, IEEE Computer Soclety, New York,
1980.

[Basill & Freburger 81]
V. R. Basill and K. Freburger, Programmlng Measurement and Estl-
matlon In the Software Engineering Laboratory, Journal of Systems
and Software 2, pp. 47-57, 1981.

[Baslll & Welss 81]
V. R. Baslll and D. M. Welss, Evaluation of a Software Requlre-
ments Document By Analysls of Change Data, Proc. Fifth Int. Conf.
Software Engr., San Dilego, CA, pp. 314-323, March 9-12, 1981.

[Bastll & Relter 81]
V. R. Basill and R. W. Relter, A Controlled Experiment Quantita-
tlvely Comparing Software Development Approaches, [EEE Trans.
Software Engr. SE-7, May 1981.

[Bastll & Doerflinger 83]
V. R. Baslll and C. Doerflinger, Monltoring Software Development
Through Dynamlc Varlables, Proc. COMPSAC, Chlcago, IL, 1683.

[Baslll, Selby & Phlllips 83]
V. R. Baslll, R. W. Selby, Jr.,, and T. Y. Phllllps, Metric Analysls
and Data Valldatlon Across FORTRAN Projects, IEEE Trans. Soft-
ware Engr. SE-9, 8, pp. 852-883, Nov. 1983.

(Baslll & Hutchens 83]
V. R. Baslll and D. H. Hutchens, An Emplrical Study of a Syntactle
Metrte Famlily, Trans. Software Engr. SE-9, 6. pp. 664-872, Nov.
1983.

170

....................
......




[Baslll & Perricone 84]
V. R. Basill and B. T. Perricone, Software Errors and Complexlity:
An Empirical Investigation, Communications of the ACM 27, 1, pp.
42-52, Jan. 1984.

[Basill & SelLy 84)]
V. R. Baslll and R. W. Selby, Jr., Data Collection and Analysls in
Software Research and Management, Proceedings of the American
Statistical Association and Biometric Society Joint Statistical Meet-
ings, Philadelphla, PA, August 13-16, 1984.

(Basllt & Ramsey 84]
V. R. Baslll and J. R. Ramsey, Structural Coverage of Functlonal
Testing, Dept. Com. Scl., Unlv. Maryland, College Park, Tech. Rep.
TR-1442, Sept. 1984,

[Baslll & Welss 84]
V. R. Baslll and D. M. Welss, A Methodology for Collectlng Valld
Software Engineering Datax, Trans. Software FEngr. SE-10, 6, pp.
728-738, Nov. 1984.

(Behrens 83]
C. A. Behrens, Measurlng the Productlvity of Computer Systems De-
velopment Actlivitles with Functlon Polnts, [EEE Trans. Software
Engr. SE-9, 8, pp. 648-651, Nov. 1983.

[Boehm 81]
B. W. Boehm, Software Engineering Economaics, Prentice-Hall, En-
glewood Cliffs, NJ, 1981.

(Boehm et al. 84] .
B. W. Boehm., T. E. Gray, and T. Seewaldt, Prototyping Versus
Specifylng: A Multlproject Expertment, [EEE Trans. Software Engr.
SE-10, 3, pp. 290-303, May 1984.

[Bowen 84]
J. Bowen, Estimatlon of Residual Faults and Testlng Effectlveness,
Seventh Minnowbrook Workshop on Software Performance Evalua-
tion, Blue Mountaln Lake, NY, July 24-27, 1984,

(Box. Hunter, & Hunter 78]

G. E. P. Box. W. G. Hunter. and J. S. Hunter, Statistics for Exrperi-
menters, John Wlley & Sons, New York, 1978.

l".l'.'l'l "f.:ﬁ': ..v'. .c'.‘f. : \

rrrr
.




[Brooks 80]
R. E. Brooks, Studylng Programmer Behavior: The Problem of Prop-
er Methodology, Communications of the ACM 23, 4, pp. 207-213,
1980.

(Brooks 81]
W. D. Brooks, Software Technology Payoff: Some Statlstical Evl-
dence, J. Systems and Software 2, pp. 3-9, 1981.

[Buck 81]

F. O. Buck, Indlcators of Quality Inspections, IBM Systems Products
Division, Kingston, NY, Tech. Rep. 21.802, Sept. 1981.

[Callllau & Rubin 79]
R. Callllau and F. Rubln, ACM Forum: On a Controlled Experiment
In Program Testlng, Communications of the ACM 22, pp. 687-8,
Dec. 1979.

[Card et al. 82]
D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Baslll,
The Software Engineering Laboratory, Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD Rep. SEL-81-
104, Feb. 1982.

[Chen 78]
E. T. Chen, Program Complexlty and Programmer Productlivity,
IEEE Trans. Software Engr., pp. 187-194, May 1978.

(Church 84]
V. Church, Benchmark Statlstlcs for the VAX 11/780 and the IBM
4341, Computer Sclences Corporatlon, Sllver Spring, MD, Internal
Memo, 1984.

[Cochran & Cox 50|
W. G. Cochran and G. M. Cox. Ezperimental Designs. John Wlley &
Sons, New York, 1950.

[Cochran 53]
W. G. Cochran, Sampling Techniques, John Wlley & Sons, Inc.,
1953.

(Currlt 83]
P. A. Currit, Cleanroom Certlilcatlon Model, Proc. Eight Ann. Soft-
ware Engr. Workshop, NASA/GSFC, Greenbelt, NMD, Nov. 1983.




[Curtls et al. 79]
B. Curtls, S. B. Sheppard, P. Mlllilman, M. A. Borst, and T. Love,
Measuring the Psychologlcal Complexity of Software Malntenance
Tasks with the Halstead and McCabe Metrics, IEEE Trans. Software
Engr., pp. 96-104, March 1979.

[Curtls, Sheppard & Milliman 79]
B. Curtls, S. B. Sheppard, and P. M. Mllllman, Third Time Charm:
Stronger Repllicatlon of the Abllity of Software Complexity Metrics
to Predict Programmer Performance, Proc. Fourth Int. Conf. Soft-
ware Engr:, pp. 356-380, Sept. 1979.

[Curtis 83]
B. Curtls, Cognltive Sclence of Programmling, Sizth Minnowbrook
Workshop on Software Performance Ewvaluation, Blue Mountaln
Lake, NY, July 19-22, 1983.

[Decker & Taylor 82]
W. J Decker and W. A. Taylor, FORTRAN Statlc Source Code
Analyzer Program (SAP) User's Gulde (Revislon 1), Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD, Rep.
SEL-78-102, May 1982.

[Duran & Ntafos 81]
J. W. Duran and S. Ntafos, A Report on Random Testing*, Proc.
Fifth Int. Conf. Software Engr., San Dlego, CA, pp. 179-183, March

9-12, 1981.

[Dyer 81]
M. Dyer, Cleanroom Prolect Management Data, IBM-FSD Internal
Memo to H. D. Mllls, October 18, 1981.

[Dyer 823

M. Dyer, An Approach to Statlstical Testing for Cleanroom Software
Development. IBM-FSD Tech. Rep. 86.0002, 1982.

(Dyer & Mills 82]
M. Dyer and H. D. Mllis, Developing Electronic Systems with
Certiflable Rellability, Proc. NATO Conf, Summer, 1982.

[Dyer 82a]
M. Dyer, MalJor System Mode 11 (MSM11) Testing, IBM-FSD Inter-
nal Memo to H. D. Mllls, May 18, 1982,
173
--------- :bv‘_xii;x".- P W PRSI IR -;';‘- NS PR TV L S U .{;‘;.YA '._;J.l.._;n_;‘;:;-_‘_‘-n-x.:- R U




<

AL

XA AL

-, }- '.-

[Dyer 82b]
M. Dyer, Top-Down Random Testing, IBM-FSD Internal Memo to
H. D. Mllls, June 21, 1982.

[Dyer 82c¢]
M. Dyer, Cleanroom Software Development Method, IBM Federal
Systems Divislon, Bethesda, MD, October 14, 1982.

[Dyer 83]
M. Dyer, Software Valldatlon In the Cleanroom Development
Method, IBM-FSD Tech. Rep. 86.0003, August 19, 1983.

[Elshoff 84]
J. L. Elshoff, Characteristic Program Compiexity Metrlcs, Proc.
Seventh Int. Conf. Software Engr., Orlando, FL. pp. 288-293, 1984.

[Endres 75]
A. Endres, An Analysls of Errors and thelr Causes In Systems Pro-
grams, [EEE Trans. Software Engr., pp. 140-149, June 1975.

[Fagan 76|
M. E. Fagan, Deslgn and Code Inspectlons to Reduce Errors in Pro-
gram Development, IBM Sys. J. 15, 3, pp. 182-211, 1978.

[Ferrentlno & Mills 77
A. B. Ferrentino and H. D. Mllis, State Machlnes and Thelr Seman-
tlcs In Software Englneerlng, Proc. IEEE COMPSAC, 1977.

[Feuer & Fowlkes 79|
A. R. Feuer and E. B. Fowlkes, Some Results from an Emplrical
Study of Computer Software, Proc. Fourth Int. Conf. Software
Engr., pp. 351-353, 1979.

[Foster 80]
K. A. Foster, Error Sensitlve Test Cases, [EEE Trans. Software
Engr. SE-6, 3. pp. 258-264. 1980.

[Gaffney & Heller 80]
J. E. Gaffney and G. L. Heller, Macro Varlable Software Models for
Application to Improved Software Development Management, Proc.
Workshop on Quantitative Software Models for Reliability, Complex:-
ty and Cost, IEEE Comput. Soclety, 1980.

L

'("I‘I.[




F.' Raliit it SRR o AR ettt at-a et o E NN A S sl S 2 i - A el oUA st L S st il Sl il S e o i At SN At AN Sedr g g Sl § it Sl bl And tod
N 3 - ST . AR N AEAA AL AL b Ad N Aoy

w}.

|Gannon & Hornling 75)
J. D. Gannon and J. J. Hornlng, The Impact of Language Deslgn on
the Production of Rellable Software, Trans. Software Engr. SE-1,
pp. 179-191, 1975.

(Gannon 77]
J. D. Gannon, An Experimental Evaluation of Data Type Conven-
tlons, Communications of the ACM 20, 8, pp. 584-595, 1977.

[Gannon et al. 83)
J. D. Gannon, E. E. Katz, and V. R. Baslll, Characterizing Ada Pro-
grams: Packages, The Measurement of Computer Software Perfor-
mance, Los Alamos Natlonal Laboratory, Aug. 1983.

[Gloss-Soler 79]
S. A. Gloss-Soler, The DACS Glossary: A Blbllography of Software
Englneering Terms, Data & Analysls Center for Software, Grifflss
Alr Force Base, NY 13441, Rep. GLOS-1, Oct. 1979.

[Goel 82]
A. L. Goel, Software Rellablllty and Estlmation Technlques, Rome
Alr Development Center, NY, Rep. RADC-TR-82-263, October 1982.

[Goel 83]
A. L. Goel, A Guldebook for Software Rellability Assessment, Dept.
Industrial Engr. and Operations Research, Syracuse Unlv., New
York, Tech. Rep. 83-11, April 1983.

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data
Selection, IEEE Trans. Software Engr., pp. 156-173, June 1975.

[Gould & Drongowsk! 74]
J. D. Gould and P. Drongowskl, An Exploratory Study of Computer
Program Debugging, Human Factors 18, 3, pp. 258-277, 1974.

[Gould 75]
J. D. Gould, Some Psychological Evidence on How People Debug
Computer Programs, International Journal of Man-Machine Studies
7, pp. 151-182, 1975.

[Halstead 77

M. H. Halstead., Elements of Software Science, North Holland., New
York, 1977.




P el S Nnftedh dulJtd Al A Sl e Wi St s A Eaalioad . RaChC A AT e YA A AR AT I AL Y AR AR S el e ol AR A ah

..................

[Hamer & Frewl!n 82]
P. G. Hamer and G. D. Frewin, M. H. Halstead's Software Sclence --
A Critlcal Examlnatlon, Proc. Sizth Int. Conf. Software Engr., Tok-
yo, Japan, pp. 197-206, Sept 13-16, 1982.

[Hetzel 78]
W. C. Hetzel, An Expermental Analysis of Program Verlflcatlon
Methods, Ph.D. Thesls, Unlv. of North Carollna, Chapel Hill, 1978.

[Hoare 89]
C. A. R. Hoare, An Axlomatic Basls for Computer ProgrammIing,
Commaunications of the ACM 12, 10, pp. 578-583, Oct. 1989.

[Howden 78]
W. E. Howden, Rellabllity of the Path Analysls Testlng Strategy,
IEEE Trans. Software Engr. SE-2, 3, Sept. 1978.

(Howden 78]
W. E. Howden, Algebralc Program Testing, Acta Informatica 10,
. 1978.

[Howden 80]
W. E. Howden, Functional Program Testlng, IEEE Trans. Software
Engr SE-8, pp. 162-189, Mar. 1980.

[Howden 81]
W. E. Howden, A Survey of Dynamlc Analysis Methods, pp. 209-231
In Tutorial: Software Testing & Validation Techniques, 2nd Ed., ed.
E. Miller and W. E. Howden, 1981.

[Hutchens & Baslli 83]
D. H. Hutchens and V. R. Baslll, System Structure Analysls: Ciuster-
Ilng Wlth Data Bindings, Dept. Com. Scl., Unlv. Maryland, College
Park, Tech. Rep. TR-1310, August 1983.

[Hwang 81]
S-S. V. Hwang, An Emplrical Study In Functional Testlng, Structur-
al Testing, and Code Reading/Inspectionx, Dept. Com. Scl., Unlv. of
Maryland, College Park, Scholarly Paper 362, Dec. 1981.

[[EEE 83

[EEE., [EEE Standard Glossary of Software Englneering Termlnolo-
gy, Rep. IEEE-STD-729-1683, [EEE, 342 E. 47th St. New York.

p
l~ 1‘
N

1983. d
f’ﬂ




;ﬁ

[Jellnsk! & Moranda 73]
Z. Jellnskl and P. B. Moranda, Applicatlons of a Probabllity-Based
Model to a Code Reading Experiment, Proc. IEEE Symposium on
Computer Software Reliabiity, New York, pp. 78-81, IEEE, 1973.

[Jensen & Wlrth 74]
K. Jensen and N. Wirth, PASCAL User Manual and Report, 2nd
Ed., Springer-Verlag, New York, 1974.

(Johnson, Draper & Soloway 83]
W. L. Johnson, S. Draper, and E. Soloway, An Effectlve Bug
Classification Scheme Must Take the Programmer 1nto Account,
Proc. Workshop High-Level Debugging, Palo Alto, CA, 1983.

(Kelly 82]
J. P. J. Kelly, Specification of Fault-Tolerant Multli-Version Soft-
ware: Experimental Studles of a Deslign Diversity Approach, UCLA
Ph.D. Thesls, 1982.

[Knight 84]
J. Knlght, A Large Scale Experiment in N-Version Programmling,
Proc. of the Ninth Annual Software Engineering Workshop,
NASA/GSFC, Greenbelt, MD, Nov. 1984.

(Linger, Mllls & Wittt 79]
R. C. Linger, H. D. Mllls, and B. I. Witt, Structured Programming.
Theory and Practice, Addlson-Wesley, Reading, MA, 1979.

[McCabe 76]
T. J. McCabe, A Complexity Measure, I[EEE Trans. Software Engr.
SE-2, 4, pp. 308-320, Dec. 19786.

[McMullln & Gannon 80]
P. R. McMullln and J. D. Gannon, Evaiuatlng a Data Abstractlon
Testing System Based on Formal Speclficatlons. Dept. Com. Scl,,
Unlv. of Maryland, College Park, Tech. Rep. TR-993. Dec. 1980,

iMiara et al. 83
R. J. Mlara, J. A. Musselman, J. A. Navarro, and B. Shnelderman.
Program Indentatlon and Comprehensiblilty, Communications of the
ACM 286. 11, pp. 861-887, Nov. 1983.




RCAREINE T SR N o Bl ol Jeh sha ok udhid

[Mills 72a)
H. D. Mllls, Mathematlcal Foundatlons for Structural Programmlng,
IBM Report FSL 72-6021, 1872.

[Mills 72b]
H. D. Mills, Chlef Programmer Teams: Princlples and Procedures,
IBM Corp., Galthersburg, MD, Rep. FSC 71-8012, 1972.

[Mills 75]
H. D. Mills, How to Write Correct Programs and Know It, Int. Conf.
on Reliable Software, Los Angeles, pp. 363-370, 1975.

(Moher & Schnelder 82]
T. Moher and G. M. Schneider, Methodology and Experimental
Research In Software Englneering, International Journal of Man-
Machine Studies 18, 1, pp. 85-87, 1982.

[Musa 75]
J. D. Musa, A Theory of Software Rellablllty and Its Appllecatlon,
IEEFE Trans. Software Engr. SE-1, 3, pp. 312-327, 1975.

Myers 78]
G. J. Myers, Software Reliability: Principles & Practices, John Wiley
& Sons, New York, 1978.

N\ vers 78]
G. J. Myers, A Controlled Experlment in Program Testing and Code
Walkthroughs/Inspections, Communications of the ACM, pp. 780-
788, Sept. 1978.

[Myers 79]
G. J. Myers, The Art of Software Testing, John Wlley & Sons, New
York, 1979.

[Naur 69]

P. Naur, Programming by Actlon Clusters, BIT 9, 3. pp. 250-238,
1969.

[Ostrand & Weyuker 83]
T. J. Ostrand and E. J. Weyuker, Collectlng and Categorizing Soft-
ware Error Data In an Industrial Environment, Dept. Com. Scl..
Courant Inst. Math. Scl.. New York Univ., NY, Tech. rep. 47. Au-
gust 1982 (Revised Nay 1983).

178




T

T

[Panzl 81]
D. J. Panzl, Experlence with Automatlc Program Testlng, Proc.
NBS Trends and Applications, Nat. Bureau Stds., Galthersburg, MD,
pp. 25-28, May, 28 1981.

[Parnas 72a]j
D. L. Parnas, Some Concluslons from an Experlment 1n Software En-
gineerlng Technlques, AFIPS Proc. 1972 Fall Joint Computer Conf.
41, pp. 325-329, 1972.

[Parnas 72b]
D. L. Parnas, On the Crlteria to be Used In Decomposing Systems
Into Modules, Communications of the ACM 15, 12, pp. 1053-1058,
1972.

[Parnas 72c]
D. L. Parnas, A Technlque for Moduie Speclficatlon With Examples,
Communacations of the ACM 15, May 1972.

[Ramsey 84
J. Ramsey, Structural Coverage of Functional Testing, Seventh Min-
nowbrook Workshop on Software Performance FEvaluation, Blue
Mountaln Lake, 1 7Y, July 24-27, 1984.

[SEL 82}
Annotated Bilbllography of Software Engineering Laboratory (SEL)
Literature, Software Eng. Lab.,, NASA/Goddard Space Flight
Center, Greenbelt, MD Rep. SEL-82-008, Nov. 1982.

[Selby 83]
R. W. Selby, Jr., An Empirical Study Comparing Software Testing
Technlques, Sizth Minnowbrook Workshop on Software Performance
Evaluation, Blue Mountaln Lake, NY, July 19-22, 1983.

[Selby 8!

R. W. Selby, Jr.. Evaluating Software Testing Strategles. Proc. o)
the Ninth Annual Software Engineering Workshop, NASA,/GSFC,
Greenbelt, MD, Nov. 1984,

{Selby. Baslll & Baker 85]
R. W. Selby, Jr., V. R. Bas!ll, and F'. T. Paker. CLEANROO\! Soft-
ware Development: An Emplrical Lvaivatlon, Dept. Cam. Set., Univ,
Maryland, College Park, Tech. Rep. TR-1415. February 1985, (sub-
mltted to the I[EEE Trans Softuare Engr)

179

......

1 I

MY ]

" .
LR NN

v,'- ,’1- . e .

[

e e N e m e e e T e e e s T T T e T e e T T (PR N L L VL -
FPGRR TR R IEEER FERCR R VETEN T R SER SO CN SRR G SIS U



“AD-A168 738 EVALUATIONS OF SOFTNARE TECHNOLOGIES: TESTING CLEANROOM
V SSGTR ﬁR=.DEPT OF

AND METRICSCU> NARYLAND UNIV COL|
CONPUTER SCIENCE R W SELB
UNCLASSIFIED AFOSR-TR-86-0279 F49620-80-C-O

F/G 972

32

NL




\" -

EE Badl Vel ™ PN
A TA Al At atn

3

Dt o o = o

s

2
ll

rrr
r
re

.

(e ¢)

o

=

e —
—

l

NICROCOP




AR At X

.........

[Shankar 82]
K. S. Shankar, A Functlonal Approach to Module Verificatlon, IEEE
Trans. Software Engr. SE-8, 2, March 1982.

[Shell 81]
B. A. Shell, The Psychological Study of Programming, Computing
Surveys 13, pp. 101-120, March 19681.

[Shen, Conte & Dunsmore 83]
V. Y. Shen, S. D. Conte, and H. E. Dunsmore, Software Sclence Re-
visited: A Critical Evaluation of the Theory and Its Emplrical Sup-
port, Trans. Software Engr. SE-9, 2, pp. 155-1685, March 1983.

[Shnelderman et al. 77]
B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, Experimen-
tal Investigations of the Utlilty of Detalled Flowcharts In Program-
ming, Communications of the ACM 20, 8, pp. 373-381, 1977.

[Slegel 53]
S. Slegel, Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hlll, New York, 1855.

[Soloway et al. 82]
E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, What Do No-
vices Know About Programming?, In Directions in Human-Computer
Interactions, ed. A. Badre and B. Shnelderman, Ablex, Inc., 1982.

[Soloway 83]
E. Soloway, You Can Observe a Lot by Just Watchlng How
Deslgners Design, Proc. Eight Ann. Software Engr. Workshop,
NASA/GSFC, Greenbelt, MD, Nov. 1983.

[Soloway & Ehrlich 84]
E. Soloway and K. Ehrlich, Emplrical Studles of Programming
Knowledge, Trans. Software Engr. SE-10, 5. pp. 595-609, Sept.
1984.

{(Stuck! 77] A
L. G. Stuckl, New Dlrections In Automated Tools for Improving
Software Quallty, \n Current Trends in Programming Methodology.
ed. R. T. Yeh, Prentlce Hall, Englewood Cliffs, NJ, 1977.

180




[Thayer, Lipow & Nelson 78]
R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability,
North-Holland, Amsterdam, 1978,

[V'aldes & Goel 83]
P. M. Valdes and A. L. Goel, An Error-Speclfic Approach to Testing,
Proc. Eight Ann. Software Engr. Workshop, NASA/GSFC, Green-
belt, MD, Nov. 1983.

[Vessey & Weber 83|

¢ I. Vessey and R. Weber, Some Factors Affectlng Program Repalr
3 Malntenance: An Emplrical Study, Communications of the ACM 26,
_ 2, Dp. 128-134, Feb. 1983.

A

. [Vosburgh et al. 84]
J. Vosburgh, B. Curtls, R. Wolverton, B. Albert, H. Malec, S.
Hoben. and Y. Liu, Productivity Factors and Programming Environ-
ments, Proc. Seventh Int. Conf. Software Engr., Orlando, FL, pp.
143-152, 1984.

[Walston & Fellx 77
C. E. Walston and C. P. Fellx, A Method of Programming Measure-
ment and Estimatlon, IBM Systems J 16, 1, pp. 54-73, 1977.

[Welss & Baslll 85]
D. M. Welss and V. R. Baslll, Evaluating Software Development by
Analysls of Changes: Some Data from the Software Englneering La-
boratory, IEEE Trans. Software FEngr. SE-11, 2, pp. 157-168,
February 1985.

[Welssman 74]
L. Welssman, Psychological Complexity of Computer Programs: An
Experimental Methodology, SIGPLAN Notices 9, 8, pp. 25 - 386,
June 1974.

‘Woodfleld, Dunsmore & Shen S1]
S. N. Woodfleld, H. E. Dunsmore. and V. Y. Shen, The Effect of
Modularizatlon and Comments on Program Comprehension. Dept.
Com. 3cl., Arlzona St. Untv,, Tempe, AZ. working paper, 1981.

[Zolnowsk! & Simmons 81!
J. C. Zolnowskl and D. B. Simmons. Taklng the Neasure of Program
Complexity, Proc. National Computer Conference. pp. 320-3386.
1981.

181

e N A T e e e e e e L e
Q'L ;. L(JJ-'BTAf;A’L.L(L 2 A-l.f.fu-f-t“\; PR

O

haCafe St Al Wi R R arA WAL e Al S _ng M RIRE RS




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dalu‘ErHered)‘

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REP R - - { Y2 GovT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

L5050 ADA 165N 3K

4.

TITLE (and Subtjtle) 5 TYPE OF REPORT & PERICD COVERED

EVALUATIONS OF SOFTWARE TECHNOLOGIES:
Testing, CLEANROOM, and Metrics

Technical Report

6 PERFORMING O3G. REPORT NUMSER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(Y)
Richard W. Selby, Jr. ABOSR-F 49620-80-C-001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT TASK
AREA & WORK UNIT NUMBERS
Department of Computer Science C} /] C‘SQ-/T
University of Maryland 9
College Park, Maryland 20742 av,';chﬁf A :2
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE . )
Math. & Info. Sciences, AFOSR May 1985 °
Bolling AFB '3»NUT§EROFPAGES
Washington, D. C. 20332
14 MONITORING AGENCY NAME 8 ADDRESSrif different from Controlling Ctlice) 15, SECURITY CLASS. 7of th:s repor!
UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18 SUPPLEMENTARY NOTES

‘3

wEv NIRTS ‘Continue ~n raverse stde 1f neces<ary and rdertify by block number;

<o

the following three areas.
iacluding 32 professional programmers and 42 advanced
compared code reading, functional testing, and structural testing in a

fractional factorial design. 2) Cleanroom Software Development: Fifteen three-

4ARSTRAAZT Continue on reverse side If necessary and idenitifv bv block numrber ‘[‘he evaluat ion Of software
technologies suffers because of the lack of quantitative assessment of their
effect on software development and modification.
quantitativelyv evaluating software technologies couples software methodology
evaluation with software measurement. The approach is applied in-depth in

1) Software Testing Strategies: A\ 74-subject study,

A seven-step approach for

university students,

o0 ::;?;3 1473 EC T.IN IF T NS 65,5 0OBSOLETE

_AzsEe

: TATIAN SF Twis :qu E]g Tata Torterad:




p gy oy
AR B
-

0 AL |

INCIASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Fntered)

L

person teams separately built a 1200-line message system to compare Cleanroom
software development (in which software is developed completely off-line)
with a more traditional approach. 3) Characteristic Software Metric Sets:

In the NASA S.E.L. production environment, a study of 65 candidate product
and process measures of 652 modules from six (51,000 - 112,000 line) projects
vielded a characteristic set of software cost/quality metrics.

PR

-
]

The major results are the following. 1) The approach described for quanti-
tatively evaluating software technologies has been demonstrated and effective
in a variety of problem domains. 2) With the professionals, code reading
detected more software faults and had a higher fault detection rate than did
functional or structural testing, while functional testing detected more

faults than did structural testing, but functional and structural testing were
not different in fault detection rate. 3) With the students, the three
techniques were not different in the number of faults detected or in the

fault detection rate, except that structural testing detected fewer faults than
did the others in one study phase. 4) Code reading detected more interface r
faults and functional testing detected more control faults than did the other
methods. 5) Most developers using the Cleanroom software development approach
were able to build systems completely off-line. 6) The Cleanroom teams' productp K
met svstem requirements more completely and succeeded on mure operational ¢
test cases than did those developed with a traditional approach. 7) An approach v
described for calculating a characteristic metric set ylelded the set for tne -
NASA S.E.L. environment (source lines, design effort, number of input/output
parameters, fault correction effort per executable statement, code effort,
number of versions).

I"",f"l

)

ME® § 2NN

IR S o o0 4

1

it

s o e
R
A

/

UNULASSTFTED

SEC LT T SUASS'F TATION OF Tet A SE Whao Data brocered T
.i




"'l'..'(?',:' s«l.-,u'-‘.d‘g, .b.-&‘..u P e Sl EA LA SRy 4 Sl A L Ak el aaiiE AR A AR E A A e I A= A RPN S R A O o -~ --‘A\‘?..

-

—‘..-'.
LY IO T~ T o o o o o' AT

-

d" B f“".

re

L
———

hd L T S ST ST S S

S ST B S S e e N L AT S
P VAPU Y VR S P PR, Wiy T Wy U, T D TN, P U DAY

P - . .

P o o LSRR St U e e SL ST S
¥ SO VA, TR ST S W TS WSy S,

R R

. - .
“obng oty e PPN . Y'Y




